
S1 Appendix Methods 1

S1.1 System description 2

Our model framework is based on the individual-based spatially-explicit evolution- 3

ary framework developed in [1] and [2]. We simulate a population consisting of 4

N individuals indexed by i = {1, 2, ...N}. Individuals move in a two-dimensional 5

continuous space of size L×L with periodic boundary conditions. Periodic bound- 6

ary means that when an individual crosses any boundary, it re-emerges from the 7

opposite boundary. This can be viewed as a warping of space into the shape of a 8

torus. The distance between two individuals is the shortest distance on the surface 9

of this torus. Such a boundary condition enables us to model a small snapshot of a 10

large system while preserving the essential ecological features of the large system. 11

The important symbols and values of fixed parameters are summarized in table A. 12

S1.2 Evolvable traits: Cooperative and cohesive interac- 13

tions 14

Each individual i has two evolvable traits: (i) a ‘cooperative tendency’ modelled 15

as a binary variable, denoted by ωc,i. Individuals with ωc,i = 1 always cooperate 16

and those with ωc,i = 0 always defect. (ii) The second trait is a continuous vari- 17

able ‘cohesive tendency’, denoted by ωs,i ∈ [0,∞). Individuals exhibit collective 18

movement because of this cohesive tendency. 19

S1.3 Organismal mobility and cohesive interactions 20

To model organismal mobility, we consider two extreme scenarios: 21

1. An ‘active’ scenario modelling self-propelled individuals, such as birds, fish, 22

mammals and flagellated microbes. Here, the medium has no influence on 23

organismal movement and individuals actively display ‘local flocking inter- 24

actions’ (attraction towards, and alignment with the direction of motion of 25

their neighbours). Here, the cohesive tendency is related to the distance 26

up to which an individual looks for neighbours to flock with. We call this 27

distance as the ‘local flocking radius’ Rs,i. The cohesive tendency is then de- 28

fined as ωs,i = Rs,i −Rr, where Rr is a measure of the body size or personal 29

space of the individual, as will be described in the next section. 30
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2. A ‘passive’ scenario, where individuals show no active movement, but are 31

propelled by the medium that they live in, as in non-swimming bacteria or 32

other microbes where the fluidity of the medium dominates individual motil- 33

ity. Here, the cohesive tendency is related to stickiness properties between 34

individuals when they are in close contact. The cohesive tendency is the 35

stickiness of the particles. We denote the stickiness by γi to avoid potential 36

confusion with the slightly different definition of cohesive interactions in the 37

self-propelled particle model. 38

S1.4 Model for movement of active (self-propelled) parti- 39

cles 40

All individuals move with a constant speed s. At each time step, individuals may 41

modify their direction of motion due to interactions with their neighbours. The 42

desired direction of motion di(t+∆t) at each time step is calculated according 43

to the following movement rules. In addition, individuals’ direction of motion is 44

influenced by a small amount of stochasticity. 45

Note: Vectors denoted by d(t) are directions and thus always normalized after 46

they are calculated. 47

1) Repulsion: The focal individual i moves away from individuals present within 48

a distance Rr from itself, in the direction: 49

dr,i(t+∆t) = −
∑

dij<Rr

cj(t)− ci(t)

|cj(t)− ci(t)|
(S1.1)

where ci(t) and cj(t) are the position vectors of individuals i and j respectively, and 50

dij is the distance between them. This tendency for repulsion at short distances 51

may be thought of as tendency of individuals to avoid collision with one another 52

and that Rr could represent individuals’ body size. Moving away from individuals 53

within Rr takes precedence over all other movement decisions, so the next step 54

(attraction and alignment) is skipped. 55

2) Attraction and Alignment: If there are no individuals within Rr of the 56

focal individual, but there are individuals within a distance of Rs,i (≥ Rr), the 57

focal individual will exhibit local flocking interactions with its neighbours. The 58

direction of motion due to these local interactions is a weighted average of the 59

direction of attraction towards neighbours (da,i) and the direction of alignment 60

with their direction of motion (do,i), calculated as follows: 61
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da,i(t) =
∑

Rr<dij<Rs

cj(t)− ci(t)

|cj(t)− ci(t)|

do,i(t) =
∑

Rr<dij<Rs

vj(t)

|vj(t)|

(S1.2)

where vj(t) is the velocity of individual j. The desired direction of motion is then 62

calculated as follows: 63

ds,i(t+∆t) = kada,i(t) + kodo,i(t) + (1− ka − ko)ds,i(t) (S1.3)

If there are no other individuals within a distance Rs,i, then both da,i(t) and do,i(t) 64

are zero, and the desired direction is the same as the previous direction, with some 65

added error as described in the next point. The parameters ka and ko represent the 66

tendencies to attract and align with neighbours respectively, such that ka+ko ≤ 1 67

and are chosen based on the empirical work of [2]. 68

3) Constraints: Once the desired direction of motion is computed, two con- 69

straints are imposed to make the movement rules more realistic. i) Copying er- 70

ror: Since individuals may make mistakes in copying the directions and velocities 71

of other individuals, a small vector error ηce is added to the desired direction. 72

Each component of this vector error is normally distributed with mean zero and 73

variance σ2
ce. ii) Turning rate constraint: An individual cannot turn instanta- 74

neously, but at a maximum rate ωmax. The maximum angle that it can turn 75

in a single time step is then θmax = ωmax∆t. The final direction taken is then 76

di(t+∆t) = turn(ds,i(t+∆t) + ηce) (OR turn(dr,i(t+∆t) + ηce), in case of re- 77

pulsion). Here turn() means the vector is turned towards the desired direction up 78

to maximum turning of θmax. 79

The position in the next step is then calculated as 80

ci(t+∆t) = ci(t) + s∆tdi(t+∆t) (S1.4)

We fix the values of ka and ko throughout the simulation, but evolve the local 81

flocking tendency (Rs) across generations based on pay-off structures described 82

in sections S1.6 and S5.1. Different values of Rs give rise to various types of 83

movement, like solitary movement at Rs ≤ Rr, fission-fusion grouping at medium 84

values of Rs and large groups at very high Rs. Since Rs,i is the evolvable cohesive 85

trait, we are not imposing the nature of collective movement in our simulations. 86
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S1.5 Model for movement of passive particles 87

Passive individuals (or particles) are completely driven by the medium. An indi- 88

vidual will stick to the other individual with a straight γi when it comes in contact 89

others. We modify the above movement model and adapt it to simulate this be- 90

haviour. To model the medium, we simulate the velocity field of a turbulent fluid 91

with various levels of turbulence, following [3]. 92

S1.5.1 A synthetic turbulence model 93

We model a two-dimensional, isotropic, homogenous fluid flow with zero mean 94

velocity. We assume that the flow is divergence-free (as there are no fluid sources 95

in the area of interest), and can therefore be represented by a potential function, 96

ψ. The streamlines of the velocity field then v follow the contour lines of ψ, as 97

v =
(∂ψ

∂y
,−

∂ψ

∂x

)

(S1.5)

The potential function ψ, is assumed to follow the following stochastic partial 98

differential equation: 99

∂ψ

∂t
= ν∇2ψ +

√

ξ
∂W

∂t
(S1.6)

with the following features: The diffusion coefficient ν determines the time scale 100

of the fluid flow reaching an equilibrium, ξ defines the strength of stochastic fluc- 101

tuations in the flow, (i.e. higher the value of ξ, more turbulent the fluid becomes), 102

and W is a coloured noise with energy at 2-D frequency k = (kx, ky) given by 103

λk = λ0e
−µ|k|. If we expand W as a Fourier series, 104

W (x/L, t) =
∑

k∈2πZ2

√

λkŴk(t)e
ikx/L (S1.7)

Substituting this expansion in Eq (S1.6) leads to a system of Ornstein-Uhlenbeck 105

equations: 106

dψ̂k = −ν|k|2ψ̂kdt+
√

ξλkdŴk (S1.8)

which can then be evolved in Fourier space exactly using the theory of stochastic 107

integration [4]: 108
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ψ̂k(t+∆t) = ψ̂k(t)e
−ν|k|2∆t +

√

ξλk
2ν|k|2

(1− e−2ν|k|2∆t) Zk (S1.9)

where Zk are random numbers sampled from the N(0, 1), with the constraint that 109

Zk = Z∗
−k, so that ψ is real valued. 110

We solve these set of equations by initializing ψ as a delta function, so that ψ̂(k) = 111

1 ∀ k. 112

S1.5.2 Passive (tracer) particles in fluid medium 113

We assume that the inertia of particles can be ignored and thus, are carried by 114

the flow along its streamlines. The movement and cohesive interactions among 115

particles is implemented in a simple way by modifying the movement model for 116

active particles. 117

If two individuals are within a distance Rr of each other, they repel from each 118

other and their desired direction of motion given by 119

di(t+∆t) = −
∑

dij<Rr

cj(t)− ci(t)

|cj(t)− ci(t)|
(S1.10)

where the summation is over all individuals within this short distance of repulsion. 120

If there are no individuals within the short repulsion area, individuals will be 121

attracted towards neighbors who are within a distance of Rs. In such a case, the 122

desired direction motion is given by 123

di(t+∆t) =
∑

Rr<dij<Rs

cj(t)− ci(t)

|cj(t)− ci(t)|
+ ηce (S1.11)

where ηce represents a random vector with mean zero and variance σ2
ce. 124

The final speed and the direction of motion of the particle is then given by 125

vi(t+∆t) = vf (t) + γidi(t) (S1.12)

where vf (t) is the flow velocity and γi is the strength of cohesive interactions 126

arising from stickiness or adhesive property of the individual i. Note that we do 127

add a small noise to the individual’s desired direction of the motion but due to 128

lack of interim of individuals, no turning rate constraint is applied. This model 129
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can capture a range of behaviours where individuals trace the fluid when solitary, 130

but stick together and move as a group when they come very close. We also note 131

that the evolvable trait in this model is γi and we fix the radius of interaction to 132

a constant. 133

S1.6 Payoff structure 134

Individuals move according to the movement rules (of either the active or passive 135

system) for nm steps. Depending on the strength of cohesive interactions, individ- 136

uals may be found in groups. We define any two individuals as belonging to the 137

same group if they are within a distance Rg from each other. We identify groups 138

using a standard union-find algorithm [5]. We assume that individuals perform 139

cooperative interactions with other individuals within their group at the nth
m time 140

step. 141

In the active system, if a group g has ng individuals of which kg are cooperators, 142

then all cooperators in that group receive a payoff of 143

Vc(g) =
kg − 1

ng − 1
b− c− csR

2

s,i (S1.13)

whereas all defectors of that group receive a payoff of 144

Vd(g) =
kg

ng − 1
b− csR

2

s,i (S1.14)

where b is the benefit received from cooperators in the group (excluding self), c is 145

the cost of cooperation and csR
2
s,i(= cs(Rr + ωs,i)

2) is the cost of cohesive interac- 146

tions. Thus, in the active system, increasing the cost of cohesion also effectively 147

increases baseline fitness by csR
2
r . Note that solitary cooperators get a payoff of 148

−c, and solitary defectors get zero payoff. We discuss the derivation of this payoff 149

structure and its modifications in section S5.1. 150

In the passive system, Rs,i in the above equations is replaced with γi. 151

The fitness of each individual is a certain baseline value (V0) plus payoffs arising 152

from cooperative and flocking interactions: 153

Vi = V0 + Vc/d,i −min
i
(Vc/d,i) (S1.15)
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We subtract mini(Vc/d,i) so that even the least fit individual has a positive fitness 154

V0. This allows us to control the strength of selection by varying the value of V0. 155

A low value corresponds to strong selection, and a high value to weak selection. 156

S1.7 Reproduction and dispersal 157

Individuals compete globally for reproduction, i.e. they reproduce with probabil- 158

ity of reproduction proportional to their relative fitness in the entire population. 159

Reproduction is asexual and synchronous. A roulette-wheel algorithm is used to 160

generate N offspring for the next generation. All parents are immediately removed 161

from the system after offspring are created. When an individual reproduces, it 162

passes on it’s two traits (ωs,i and ωc,i) with a small mutation rate to its offspring. 163

For the trait ωs,i, the mutation is implemented as an addition of a normally dis- 164

tributed noise ηµs with mean zero and standard deviation σµs. For the binary 165

cooperative trait, ωc,i is flipped with a probability pµc. The offspring are dispersed 166

to random locations in space and with random orientation. 167

S1.8 Simulation initialisation and replicates 168

Simulations start with individuals located at random positions with random di- 169

rections of motion. At the beginning of the first generation, all individuals have 170

ωs,i = 0 (i.e. have no cohesive tendency) and ωc,i = 0 (all are defectors). A single 171

simulation consists of T generations, with each generation consisting of nm move- 172

ment steps followed by cooperative interactions, reproduction, death of parent, 173

and dispersal of offspring. Each simulation is replicated nrep times with different 174

initial positions, initial directions and seeds for the random number generators. 175

For the results presented in the main text and parameter scans in the supplemen- 176

tary information, we simulated 10 replicates, each consisting of 2000 generations 177

of 1024 individuals, each generation with 2000 movement steps, unless otherwise 178

stated (simulations for the analyses of timeseries were run until 32000 generations). 179

The number of particles that can be simultaneously simulated presents a strong 180

constraint on the simulation capacity. For the results produced according to the 181

above scheme, a single data point required simulation of 2000 steps/generation 182

× 2000 generations per simulation × 10 replicates = 4× 107 movement steps per 183

individual, or 40-billion movement steps per data point. 184

Our simulations were written in CUDA-C++ and run on an Nvidia Tesla-K20 185

GPU with CUDA 5.5. With this configuration, the time taken to simulate 32 186

independent parallel runs up to 2000 generations was 2 hours (i.e. 20 hours for all 187
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10 replicates). The entire code is available on GitHub at the following URLs: 188

https://github.com/tee-lab/altruism_active, and 189

https://github.com/tee-lab/altruism_passive. 190

S1.9 Instantaneous, average and evolved trait values 191

In each simulation, we keep track of the two evolvable variables of all individuals in 192

the population: local cohesive tendencies ωs,i and their corresponding cooperative 193

trait (cooperator or defector). We do often plot instantaneous population averages 194

of these quantities, the instantaneous average cohesive tendency of the population 195

(ωs) and the instantaneous proportion of cooperators in the population (p). Thus, 196

p =
1

N

N
∑

i=0

ωc,i (S1.16)

ωs =
1

N

N
∑

i=0

ωs,i (S1.17)

Furthermore, the average cohesive tendency of cooperators and defectors is calcu- 197

lated as follows: 198

ωsc =
1

pN

N
∑

i=0

ωs,iωc,i (S1.18)

ωsd =
1

(1− p)N

N
∑

i=0

ωs,i(1− ωc,i) (S1.19)

The ‘evolved values’ of p and ωs are obtained by averaging p and ωs over all 199

generations in a simulation (leaving out the first Ttrans = 500 generations to allow 200

transients to die down), and again averaging over the nrep replicates. 201

p̄ =
∑nrep

i=0

∑T
t=Ttrans

p

nrepT
(S1.20)

ω̄s =
∑nrep

i=0

∑T
t=Ttrans

ωs

nrepT
(S1.21)

These evolved values are then plotted against various parameter values. 202
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Parameter/constant Symbol Value
System properties
Number of individuals N 1024
System size L 300
Radius of grouping Rg 2
Movement time step ∆t 0.2
Individual traits
Radius of repulsion Rr 1
Radius of flocking interactions Rs evolvable
Cooperative tendency ωc evolvable
Cohesive tendency ωs evolvable
Movement traits
Coefficient of attraction ka 0.4
Coefficient of alignment ko 0.4
Maximum turning rate ωmax 50o/time unit
Error in copying direction ηce -
SD of error in copying direction σce 0.05
Speed s 1
Movement steps per generation nm 2000
Selection
Benefit from cooperators b 100
Cost of cooperation c ...
Cost of cohesion cs ...
Fitness V -
Baseline fitness V0 1
Number of individuals in a group g ng -
Number of cooperators in a group g kg -
Probability of mutation of coop. tendency pµc 0.005
SD of mutation in cohesive tendency σµs 0.1
Generations per run T 2000
Quantification
Number of replicates nrep 10
Measure of assortment r -
Turbulence model
Diffusion constant of fluid flow ν 0.005
Strength of stochastic fluctuations in fluid flow ξ 0.05
Velocity of turbulent medium vf -
Turbulence parameter µ ...
Fluid energy parameter λ0 ...
Particle stickiness γ evolvable

Table A: Symbols and parameter values. These values are used in all plots, unless
specified otherwise. Parameters typically varied in plots marked by ..., dynamic
quantities marked by -
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