S1. Supplementary Material

A. Data and Parameter Selection

Processing mutation data: We utilized TCGA BRCA and UCEC somatic mutation datasets. After
removing ultra mutated samples (> 1000 combined alterations), we obtained 665 BRCA samples and
207 UCEC samples. For both datasets, we performed WeSME tests for all gene pairs to estimate the
significance of mutual exclusivity. WeSME is an efficient, mutation frequency aware testing based on
weighted sampling for mutual exclusivity [1]. For co-occurrence, we performed both WeSCO and
hypergeometric tests depending on settings. Similar to WeSME, WeSCO is a mutation frequency
aware test for co-occurrence. It is more stringent than hypergeometric test and therefore can
potentially remove some mutational patterns by chance. We used hypergeometric test for
BeME-WithCo in which we want to identify mutational signature and performed WeSCO analysis for
the identified modules. For both datasets, we consider genes mutated in at least 7 samples.

For the BRCA dataset, we retained 174 pairs of genes with p <0.05 from WeSME in all settings. In
BeME-WithCo, 1,891 co-occurrent pairs of genes (p <0.01, hypergeometric test) were used for
further analysis. In BeCo-WithMEFun, we retained 1,235 pairs of genes with WeSCO (p < 0.05). For
the UCEC dataset, we utilized 280 pairs of genes with p <0.001 from WeSME and 1,028 CO pairs of
genes with p <0.001 from hypergeometric tests. To run BeCo-WithMEFun on UCEC data, we retain
992 pairs of genes with WeSCO p < 0.05. For each significant pairs, we define the weight of the edge
to be min(—log,, p,3) as the p-values of WeSME and WeSCO has the precision up to 107, This sets

the weights of edges at least 1 and gradually increased when the p-value gets smaller. The log base
100 was used to make sure that each gene pair with significant p-value less than 0.01 from statistical
tests from mutation data has a heavier weight than STRING functional edges.

Functional interactions: To obtain the edge weights for functional interactions, we downloaded
functional protein interactions from STRING database version 10.0. We used the interactions with
high confidence scores (>=900), then divided by the maximum (1000) to obtain the functional
interaction edge weight.

The number of clusters: Let f(k) be the value of the objective function by setting the number of
modules to k. We define f(k)/k as the average module benefit. Starting with & =2 and iteratively
increasing by 1, we observe that f(k)/k gradually increases but peaks around 4 or 5 then start
decreasing. We either pick K or K+1 where f(k)/k is maximized at K. The number of clusters is set to
be K+1 when f(k)/kis maximized at K and at K+1 we do not observe a significant drop (
SIK+D/(K+1)>(0.9*f(K))/K). Otherwise we pick K to be the number of modules in the final
solution. Figure A in S1 Text shows that we stops at k=7 for BeME-WithFun, k=6 for
BeME-WithCo on BRCA dataset, £k =6 for BeME-WithFun and £ =5 BeME-WithCo on UCEC
dataset. We used £ =2 for BeCo-WithMEFun with both TCGA BRCA and UCEC datasets.
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Fig. A The number of modules k£ versus average benefit per module f(k)/k for TCGA BRCA and
UCEC datasets.

Density and maximum number of genes per module: We set the density of the modules D = 0.7 to
make sure that the majority of genes in the same module are functionally interacting or co-occurring.
For the maximum number of genes per module , we set M = 10. Note that the number of genes in all
of our modules on both BRCA and UCEC datasets is less than or equal to 5.

B. The Proof of Binary Constraints and Symmetry Breaking for Solving ILP
Binary Constraints

The binary constraints on y,, is enough to make sure all the variables are binary in the optimal
solution. Constraints (4) to (6) guarantee that x,;, is binary if y, and y; are binary. This is because
if either y; =0 or y; =0 then x;;, =0 by Constraints (4) and (5). When y; =y, =1 then x; =1
by Constraints (6). Similarly, Constraints (7) to (9) guarantee that u,; is also binary if y,., and y.
(K'=K +1) are binary. The set of constraints (10) guarantees z,; is also binary given the u; and x;,
are all binary.

Symmetry Breaking

Symmetry in ILPs can lead to significant increase in the running time and memory usage of
branch-and-bound algorithms because it not only allows for equivalent solutions but can create
multiple equivalent subproblems in branch-and-bound trees. Previous research have suggested adding
constraints to restrict to feasible solution set in order to reduce the symmetry in solving ILPs [2,3].
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A feasible solution to our ILP contains the assignments of the variables y; which assign gene
i to module k. These assignments correspond to a 0-1 matrix where rows represent genes and
columns represent modules. For example, Y, and Y, represent two feasible solutions when
assigning 4 genes to 3 modules. However, Y, and Y, have the same objective value since we can
permute the columns of Y, to obtain Y, .
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To reduce the number of equivalent solutions, we restrict our feasible solutions to assignment matrices
with columns in increasing lexicographical order. The column/module M, is lexicographically
smaller than column A, if the smallest index of the genes of M is less than that of A, . In the
above example, Y, has columns in increasing lexicographical order while Y does not. In Y,
column 3 is lexicographically smaller than column 2.

We can add the following constraints to the ILP to restrict the feasible region to assignment
matrices with columns in increasing lexicographical order:
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The above constraints ensure that we only assign gene i to one of the modules &, £+ 1,...,K
if we already assign one of genes with smaller index to module £ — 1. Similar constraint sets were
proposed to allocate surgery blocks to operating rooms [4].

As shown in Figure B in S1 Text, the running time of BeWith is significantly improved when
adding symmetry breaking constraints for larger k. The running time of BeCo-WithMEFun is less
than 10 seconds on both BRCA and UCEC datasets.

S R

BeME-WithFun BeME-WithCo BeME-WithFun BeME-WithCo
2000 ©nN TCGA BRCA 1600 on TCGA BRCA 2500 0N TCGA UCEC 60000 N TCGA UCEC

1400
o 50000
1500 1200
40000
= 16000 1500
2 1000 800 30000
&= 1000
600 20000
500 400 5
200 10000
0 0 0 0

2345678 2 3 45 6 7 2 3 4 5 6

number of clusters (k)


https://paperpile.com/c/vxXA7h/3vvSO

Fig. B. The running time of BeWith with and without symmetry breaking of BeME-WithFun and
BeME-WithCo on TCGA BRCA and UCEC datasets.

C Method Evaluation

Generating random instances

For each randomized instance, we first randomize the STRING functional network by swapping
edges, which preserves node degree distribution. For edge swapping, we randomly chose two edges
without common neighbors and swap their neighbors so that two new edges are created and repeated
the edge swapping process at least 100 times the number of edges as suggested by Milo et al. /5]. To
randomize ME/CO edges, we permuted the p-values for the gene pairs with WeSME/WeSCO p-values
less than 0.25. 100 random instances were generated to compute the significance of BeWith modules.
When we do within or between only randomization, we randomized only some type of edges. For
BeME-WithFun, we randomized only functional edges for within randomization and ME edge for
between randomization. Similarly, for BeME-WithCo, we permuted only CO edge for within
randomization and ME edges for between randomization

Generating Simulated inputs

To show how well BeWith can identify modules with desired properties in the presence of noise, we
generated simulated data and applied BeWith to the generated data.

Step 1: Generating random background: We first created a randomized functional network of 1000

genes in this step as follows: Choose 1000 genes randomly from Human String network. Randomize
the subnetwork of these genes by swapping edges. ME and/or CO edges among 1000 genes are then
randomly added depending on the settings. Let P, and P, be the list of p-values from WeSME
and WeSCO tests on TCGA Breast Cancer dataset. Consider each gene pair and randomly sample a

p-value from the list of P,,, and add an ME edge if p < 0.01. CO edges are added similarly if they

are used in the setting.

Step 2: Planting modules: We plant k (2 < k < 4) subnetworks randomly in the random network

generated in the previous step. We randomly choose & between 2 and 4 and for each module, we

randomly choose 2-5 genes such that no genes belong to more than one module. Edges are added for
the selected modules depending on the setting as follows.

BeME-WithFun: For each gene g in a module M, we choose a random fraction (at least 0.7) of other
member genes in M and add functional edges among g and these genes. For each gene g in a module
M, we randomly choose a random fraction of genes in other modules (at least one gene) and we add
ME edges with significant p-values randomly sampled from Pz  Where P ‘L 18 the list of p-values
(<=0.01) from WeSME on TCGA Breast Cancer dataset. When we add an ME edge between a pair of
genes, we remove existing ME edge if there exists. Finally, with a probability 7, , we added random

noise to each of planted significant edges by replacing the p-value of the ME edge with a random
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p-value sampled from Pi,E (the background p-values (>0.01) from WeSME on TCGA Breast Cancer
dataset). We used varied noise levels r, 0f 0, 0.1, 0.2 and 0.4 to evaluate how the accuracy changes

depending on the noise level.

BeME-WithCo: For each gene g in a module M, we add CO edges among g and other genes in M .
Each CO edge has a p-value sampled from P¢., where P?., is the list of p-values (<=0.01) from
WeSCO on TCGA Breast Cancer dataset. For each gene g in a module we randomly choose a random
fraction of genes in other module (but at least one) and we add ME edges with p-values randomly
sampled from P i,,E . When we add an ME/CO edge between a pair of genes , we remove existing
CO/ME edge if there exists. As with BeMEWithFun setting, we added noise to each planted CO/ME
edge, with a given probability r, by replacing its p-value with a random p-value sampled from the

background p-values P2,/ Ph ;.

BeCo-WithMEFun - For each gene g in a module M, we choose a random fraction (at least 0.7) of
other member genes in M and add functional edges among g and these genes. Similarly, for each gene
g in a module M we randomly choose a fraction of other member genes (at least one gene) in M, and
add ME edges with p-values randomly sampled from P‘;,, . For each gene g in a module we randomly
choose a fraction of genes in other module (at least one) and we add CO edges with p-values randomly
sampled from P ‘ZO . When we add an ME/CO edge between a pair of genes, we remove existing

CO/ME edge if there exists. We added random noise to the planted edges similarly as in other settings.

We ran BeWith for each setting with stopping criteria as described in Section S1 and setting the within
density D = 0.6 considering the noise in the simulation experiments. We use different noise levels 7,
(0.1, 0.2 and 0.3) and evaluated the accuracy of our methods. For each noise level, we report the
accuracy of our method (the fraction of instances we correctly retrieve the planted set of modules
among 100 simulated datasets). In the case that we did not correctly retrieve the set of planted
modules, we checked whether we can identify a partial solution that is the majority of the genes in the
planted set of modules. We define our solution as partial match if our algorithm retrieved at least 75%
of genes in the planted modules. We compute the partial match percentage as the ratio between the
number of times we achieve partial match (including cases we achieve perfect match) and the number
of times we do the experiments. We report the accuracy and the partial match percentage of our
method in Table A.

Noise Level Measurements BeME-WithFun | BeME-WithCo | BeCo-WithMEFun
(rn)
0.0 Accuracy 0.99 1.0 0.99
Partial Match Percentage 1.0 1.0 1.0
0.1 Accuracy 0.98 0.95 0.93




Partial Match Percentage 1.0 1.0 1.0
0.2 Accuracy 0.95 0.78 0.84
Partial Match Percentage 1.0 1.0 0.99
0.3 Accuracy 0.89 0.65 0.77
Partial Match Percentage 1.0 1.0 0.98

Table A. The robustness results of BeWith with simulated data

As expected the accuracy of our method is inversely proportional to the level of the planted noise. In
the cases we could not retrieve exactly the set of planted modules, BeWith is likely able to retrieve the
majority (= 75% ) of genes in these planted modules.

D. Comparison with methods for cancer module discovery

Our approach is different from most of previous methods for mutated module identification as we focus
on finding modules with relations both within and between modules. Given differences in the objectives,
we performed the comparison for the purpose of establishing whether modules identified with
BeME-WithFun have similar enrichment in cancer genes relative to the modules uncovered by other
methods despite the fact that modules uncovered with BeME-WithFun are optimised with respect to
different set of relations.

The most comparable approaches are Multi-Dendrix [6], MEMCover [7] and CoMDP [8]. These
algorithms seek to find multiple functional modules based on mutational patterns, enforcing mutual
exclusivity relation within modules. Multi-Dendrix and MEMCover identify such multiple modules
assuming mutations may potentially co-occur between modules but without enforcing it [6,7]. CoMDP
[8] attempted to ensure co-occurrences between the modules. Table B-A in S1 Text shows the comparison
of our results in BeME-WithFun setting with the modules obtained from Multi-Dendrix and MEMCover
using BRCA somatic mutation dataset. Multi-Dendrix looks for multiple modules by optimizing mutation
coverage and mutual exclusivity, by which they implicitly aim to ensure functional similarity within the
modules. MEMCover optimizes mutation coverage while utilizing functional interactions and mutual
exclusivity within modules. Unlike the previous methods, BeME-WithFun insists on mutual exclusivity
between modules while using functional interactions within modules. We set Multi-Dendrix to produce
the same number of modules as BeME-WithFun and the core modules (combining the results with the
maximum module size varied from 2 to 5) were used for comparison. For MEMCover, we obtained
modules by setting each patient to be covered at least by 5 mutated genes and then chose the same number
of modules as BeME-WithFun based on the best coverage. Table B-A in S1 Text shows that
BeME-WithFun finds better or comparable modules in terms of cancer driver enrichment. As we explicitly
enforce functional interactions within modules, the BeME-WithFun modules are more functionally
coherent as expected. We also compared our results with C3. Due to the lack of some main functionality,
we could not run the program with our data but instead we compared with the best module shown for the
breast cancer dataset in the paper. There are 5 cancer genes (out of 20) for two C3 modules (p=0.1)
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Driver Enrichment

Functional Coherence

Features #Known Drivers (Hypergeometric test) (Distance)
BeME-WithFun 14 6.9e-8 1.03
Multi-Dendrix 9 1.1e-3 2.52
MemCover 13 3.63e-7 1.08

Table B-A. Comparison of module properties obtained with BeME-WithFun, Multi-Dendrix and MEMCover on

breast cancer data.

We compared the UCEC results with other related methods in the Table B-B in S1 Text.

Features # Known Drivers Driver Enrichment Functional Coherence
(Hypergeometric test) (Distance)
BeME-WithFun 10 5.1e-4 1.0
Multi-Dendrix 10 5.31e-6 2.31
MEMCover 13 6.25¢e-8 1.76

Table B-B. Comparison of module properties obtained with BeME-WithFun, Multi-Dendrix and MEMCover usig
UCEC dataset.

CoMDP considers the setting similar to BeCo-WithMEFun but their original results with CNV data
identified co-occurring genes that can be attributed to insertion/deletion events in the same locus rather
than to co-occurring pathways. With BRCA somatic mutation data and requiring the same number of
genes as returned by our algorithm, CoMDP produced two modules: (TP53) and (TTN, USH2A). These
included only one known cancer driver (TP53, p=0.33) compared to two drivers (p=0.056) obtained by
BeCo-WithMEFun. Importantly, neither TTN nor USH2A significantly co-occur with TP53 after
correcting for patient mutation frequencies, making these modules hard to interpret.

In summary, although BeWith is designed to identify gene modules with specific mutation patterns in
cancer rather than to find cancer driving genes, the comparison with module finding approaches revealed
that BeWith performed well in finding driver genes too.

E. Decomposition of Module Mutational Spectrum into Mutational Signatures

We collected all observed single-nucleotide variants in TCGA together with their immediate sequence
context for all genes in each module. Mutational spectrum for each module was calculated. We
decomposed the mutational spectra into predefined mutational signatures using the R package
deconstructSigs (version: 1.8.0) [9]. Sanger COSMIC Signatures of Mutational Processes identified in
breast cancer [10] were used for decomposition. The input exome data were normalized to the whole
genome. Signatures were not extracted for Modules 2, 4, and 5 due to either small number of somatic
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variants in module genes or large number of presumably selective mutations that lead to increased

error in decomposition.

F. Application of BeWith to TCGA BRCA datasets

Additional information about BeME-WithFun modules

This section supplements the discussion of modules identified in BeME-WithFun Setting. In Table C
in S1 Text we show the number of mutated samples for each module for each subtype. Figure C in S1
Text shows the distribution for each gene.

All Basal (90) Her2 (43) LumaA (285) LumB (135)
PIK3CA, CDHI1 223 8 19 150 44
(205, 34) (8,0) (19, 1) (136%%%, 30%%%) (42,3)
MAP3KI1, 69 1 1 59 8
MAP2K4 (43,27) (1,0) ©, 1) ( 38wk 2D Hik) A, 4)
GATA3, FOXA1 70 1 1 46w 20
(60, 11) ©, 1) (1,0) (40%3*,7) (19,3)
NCOA3,TBLIXRI, 48 2 6 30% 10
NCOR2,MED23 (16,8,21,11) (2,0,2,0) (1,1,3,1) (10, 6, 10, 8) (3,1,6,2)
TTN,NEB,DMD 126 27% 15%% 50 34
(92,21, 21) (22%*, 4, 1) (11%,2,2) (35,11, 9) (24, 2, 9%%)
MUC4,MUC]12, 158 26 16 69 47%%
MUC16,MUC5B | (59, 38, 55, 28) (10,9, 6, 6) (8%,2,6, 1) (25,18,25,11) | (16,9, 18*, 10)
TP53,AKTI, 218 77k 28 54 59
MTORPPIK3R1, | (180, 13,13,13, | (76%**,0,1,2,5) | 26%** 1,2,2,1) | (27,10%,8,6,8) | (51*,2,2,3,6)
PTEN 20)

Table C. Number of mutated samples for each subtype for each module. The total number of mutated
samples for 4 subtypes are shown in the first row. For each module, we computed the number of
samples with mutations in at least one gene in the module (followed by the number of mutated
samples for each gene in the module). * indicates the significance of subtype enrichment relative to
the overall mutations of a given module (or a gene) across all the subtypes. (*** for p < 0.01, ** for p
< 0.05, and * for p < 0.1)
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Fig. C. (A) WeSME p-values between the identified modules. There are many significant mutual
exclusivity edges between modules and for some, the significance of mutual exclusivity is increased
compared to the ones with gene pairs. (B) Mutated BRCA samples for each gene identified by
BeME-WithFun.

Additional information about BeME-WithCo modules

This section supplements the discussion of modules in BeME-WithCo: co-occurrence modules that are
mutually exclusive with each other in the main text (Figure C in S1 Text).

Module 2 includes NCOR2 (nuclear co-repressor) and coactivator (NCOA3), which were also
included in FU Module 7. Their co-occurrence remain statistically significant with more stringent WeSCO
test; the mutational spectrum was not decomposed due to small number of somatic mutations in the
module. This suggests that the co-occurrence is less likely by chance and the mutations may jointly
contribute to cancer progression.



Module 6 contains three long genes including MUC16 and TTN, for which recent studies caution
that the frequent mutations might not necessarily be related to cancer progression even though they are
often found significantly mutated in cancer [11]. The co-occurrence of TTN and MUCI16 is not
statistically significant when corrected with WeSCO for patient mutation frequency yet their
co-occurrences with GON4L remain statistically significant (Table D in S1 Text). An interesting aspect of
this cluster is the presence of APOBEC related signature (Signature 2) but no mismatch repair associated
signatures. This might explain the co-occurrence of TTN and MUCI16 and their mutual exclusivity with
genes in other modules. While the mutations in TTN and MUC16 are suspected by many to be the results
of mutagenic process rather than synergistic mutations in cancer, it is worth noting that MUC16 as well as
GONA4L can drive cancer growth when overexpressed [12,13]. While overexpression and mutations can
have synergistic effects [14] and GON4L is found overexpressed in 26% of TCGA breast cancers, a
mechanistic relation of these mutations in cancer progression remains still not clear.

Finally, we point out that the co-occurrence of gene pairs in modules 4 and 5 is not statistically
significant when evaluated with WeSCO and thus is most likely related to sample mutation rates.

For BeME-WithCo, we used hypergeometric test to estimate the significance of co-occurrence.
After obtaining the modules, we computed, for every pair of genes in each module, several measures
of co-mutation including jaccard index and p-value for WeSCO test (Table D in S1 Text). Unlike
hypergeometric test, WeSCO corrects for mutation frequency in each sample.

genel gene?2 jaccard index  #gl #g2 hypergeometric =~ WeSCO
Module1 DCC TP53 0.041860465 12 212 0.002505756 0.03769
Module2 MEF2A  NCOR2 0.1875 13 25 2.17E-06 4.20E-05
Module2 NCOA3 MEF2A 0.24137931 23 13 3.34E-08 0
Module2 NCOA3  NCOR2 0.263157895 23 25 6.52E-10 0
Module3 BRCA2 RELN 0.107142857 12 19 0.003706016 0.0158
Module3 BRCA2  PREX2 0.142857143 12 12 0.000904382 0.00425
Module 3  RELN PREX2 0.107142857 19 12 0.003706016 0.0158
Module4 PIK3CA MAP2K4 0.072 237 31 0.0076195 0.218
Module 5 PCDHI9 GATA3 0.060240964 13 75 0.009968893 0.0667
Module 6 GON4L  TTN 0.053571429 8 110 0.000382004 0.00485
Module 6 TTN MUCI16 0.12987013 110 64 0.001584299 0.135
Module 6 GON4L  MUCI16 0.058823529 8 64 0.004077911 0.022923

Table D.Co-occurrence of genes within modules from BeME-WithCo. #gl (#g2 respectively) is the number of

samples in which genel (or gene2) in the pair has been mutated.

In Figure D in S1 Text, we show the mutated samples for each gene identified by BeME-WithCo
setting.
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Fig. D. Mutated BRCA samples for each gene identified by BeME-WithCo

Additional information about BeCo-WithMEFun modules

________
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Fig. E. Modules uncovered by BeCo-WithMEFun for TCGA BRCA dataset. Edge color-coding and node size
coding are the same as in Figure 2.

G. Application of BeWith to TCGA UCEC datasets

BeME-WithFun
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Fig F. Mutated UCEC samples for each gene identified by BeME-WithFun

BeME-WithCo

BeME-WithCo retrieved five modules including two one-element modules. Interestingly each of the
modules contains at least one driver gene (Figure G in S1 Text).
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Fig G. Modules uncovered by BeME-WithCo for endometrial TCGA dataset. Edge color-coding and node size
coding are the same as in Figure 2.
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BeCo-WithMEFun

BeCo-WithMEFun identified ATM gene as being co-mutated with an interacting pair containing
RPL22 (Ribosomal protein L22) and SMG7 (one of nonsense mediated RNA decay genes). While
these three genes have been linked to cancer [15], [16], [17], it remains to be established whether or
not there is a synergistic relation between them.
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Fig I. Modules uncovered by BeCo-WithMEFun for TCGA UCEC dataset. Edge color-coding and node size coding
are the same as in Figure 2.

H. BeWith Results on Different Number of Clusters:

We list the modules obtained by BeWith on BRCA and UCEC dataset with different number of clusters
[K-1,K+1] where f(k)/k is maximized at K.

Driver Enrichment Functional Distance

k Module List # Drivers Probability

FOXA1, GATA3
MAP2K4, MAP3K1
MUC4, MUC16, MUC5B, MUC12 8 3.7e-4 1.0
PIK3CA, PTEN, TP53, AKT1
TTN, NEB, DMD

FOXA1, GATA3
MAP2K4, MAP3K1
MUC4, MUC16, MUC5B, MUC12 8.64e-6 1.0
6 PIK3CA, PTEN, TP53, AKT1 1
TTN, NEB, DMD

NCOA3, TBL1XR1, NCOR2, MED23

FOXA1, GATA3

MAP2K4, MAP3K1

MUC4, MUC16, MUC5B, MUC12
7 TTN, NEB, DMD 14 6.90e-8 1.03
NCOA3, TBL1XR1, NCOR2, MED23
MTOR, PTEN, TP53, AKT1, PIK3R1
PIK3CA, CDH1

Table E-A BeME-WithFun on BRCA.

k Module List # Drivers Driver Enrichment Probability
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TP53, DCC

4 MUCI16, TTN, GON4L
PIK3CA, MAP2K4
NCOA3, NCOR2, MEF2A

7.6e-3

TP53, DCC

MUCI16, TTN, GON4L

5 PCDH19, GATA3
PIK3CA, MAP2K4
NCOA3, NCOR2, MEF2A

3.4e-3

TP53, DCC

MUCI16, TTN, GON4L

6 PCDHI19, GATA3
PIK3CA, MAP2K4
NCOA3, NCOR2, MEF2A
PREX?2, RELN, BRCA2

2.4e-3

Table E-B. BeMEWithCo on BRCA.

k Module List

# Drivers

Driver Enrichment Functional Distance

Probability

TP53, FBXW7

CCNDI1, CTNNBI, PIK3R1, PTEN, PIK3CA
4 MUCSB, MUC4, MUC12, MUC16

SMG7, PPP2R1A, SMG1, RPL22

1.35e-5 1.0

TP53, FBXW7

CCNDI1, CTNNBI, PIK3R1, PTEN, PIK3CA
DMD, TTN, NEB

MUCS5B, MUC4, MUC12, MUC16

SMG7, PPP2R1A, SMG1, RPL22

9.15e-5 1.0

ARID1A, TP53

CCND1, CTNNBI, PIK3R1, PTEN, PIK3CA
DMD, TTN, NEB

6 MUCS5B, MUC4, MUC12, MUC16

SMGT7, PPP2R1A, SMG1, RPL22

SPTBNS, SPTB, KRAS, SPTBN2, SPTAI

10

1.53e-4 1.0

Table E-C BeME-WithFun on UCEC.

k Module List

# Drivers

Driver Enrichment Probability

CTNNB1
3 SPTBNS, TNRC6A, MLL3
FN1, DOCK1, RPL22, USP9X, RYRI1

0.07

CTNNBI1

4 PPP2R1A, TP53

SPTBNS, BCOR, FLNC, TNRC6A, MLL3
FN1, DOCK1, RPL22, USP9X, RYRI1

2.5e-3
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CTNNB1
5 PIK3CA
PPP2R1A TP53 7 6.04e-4
SPTBNS5, BCOR, FLNC, TNRC6A, MLL3
FN1, DOCKI1, RPL22, USP9X, RYR1

Table E-D. BeMEWithCo on UCEC.

I. WeSME with BeME-WithFun modules

In column module pv, we compute the WeSME p-values between the genes and the corresponding
modules while the columns best pairwise p-value contain the smallest WeSME p-values between the
genes and any genes in the modules.

gene module pv best pairwise p-value
MED23 4.40E-05 0.000238
F8 0.000845 0.003535
FREM2 0.000845 0.003535
TBLIXRI1 0.00199 0.00548
ATM 0.00215 0.01255
DNM3 0.00408 0.00922
STARDS 0.00408 0.00922
AOAH 0.0079 0.0084
BRWD3 0.00933 0.01817
KIF5A 0.00933 0.01817
LETM1 0.00933 0.01817
GPR112 0.00933 0.01817
ADD2 0.00933 0.01817
TRAPPC8 0.00933 0.01817
GRIK1 0.00933 0.01817
ZNF438 0.00933 0.01817
NUP214 0.00933 0.01817
MEDI15 0.00933 0.01817
DNAHI 0.01 0.0274
BRCA2 0.01 0.0274

Table F-A WeSME mutual exclusivity p-values between FU Module 1 (TP53, MTOR, PTEN, AKTI,
PIK3R1) and other genes

gene module pv best pairwise p-value
USP36 7.00E-06 2.30E-05
PEG3 0.000169 0.000425
UTRN 0.00117 0.00278
CROCCP2 0.00119 0.00525
SPTALI 0.00143 0.0057
NWDI 0.00195 0.00366
DDR2 0.00195 0.00366
HECW2 0.00238 0.00573
VPS13C 0.002553 0.00573
DYNC2H1 0.00263 0.00586
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RAB3GAP2 0.00408 0.00739
VCX3B 0.00408 0.00739
RBM23 0.00408 0.00739
DMBTI1 0.00408 0.00739

MAGECI 0.00408 0.00739
ITGA1 0.00408 0.00739
ZDBF2 0.00547 0.0114

BCORLI1 0.00547 0.0114
NBPF1 0.00676 0.00821

COL6AS 0.00771 0.017147
DNAHS 0.0091 0.01776

DCC 0.0091 0.01776
ASXL3 0.0091 0.01776

SMCHDI 0.00975 0.0139
PRKCQ 0.00975 0.0139
AP1G2 0.00975 0.0139

CYP2A13 0.00975 0.0139
LETMI 0.00975 0.0139
GPR179 0.00975 0.0139

TNN 0.00975 0.0139

C200rf26 0.00975 0.0139
PARPS 0.00975 0.0139

MECOM 0.00975 0.0139

PTCHD2 0.00975 0.0139
ZNF687 0.00975 0.0139

TNIK 0.00975 0.0139
EWSRI1 0.00975 0.0139
MEDI13 0.00975 0.0139
STAT4 0.00975 0.0139
AMPDI 0.00975 0.0139

Table F-B WeSME mutual exclusivity p-values between FU Module 2 (PIK3CA, CDH1) and other genes

gene module pv best pairwise p-value
ATM 0.0215 0.0341
GPR98 0.0215 0.0341
MDNI1 0.024 0.0381
XIRP2 0.024 0.0381
PTEN 0.0211 0.0406
MUC4 0.0289 0.0482
DYNC2H1 0.0401 0.0551
NEB 0.0354 0.0704
DMD 0.0354 0.0704
COL12A1 0.0432 0.0756
PCNXL2 0.0432 0.0756
MED23 0.0432 0.0756
KIAA1109 0.0432 0.0756
UBRS 0.0432 0.0756
MUC17 0.0459 0.0822

Table F-C WeSME mutual exclusivity p-values between FU Module 3 (FOXA, GATA3) and other genes
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gene module pv best pairwise p-value
MAP3K1 0 0.00003
GATA3 1.00E-06 0.000067
DCC 0.00677 0.0297
NCOA3 0.00718 0.009
RYRI 0.0122 0.015
NRI1H2 0.0125 0.05165
CROCCP2 0.0223 0.0249
F8 0.0239 0.0675
MGAM 0.0285 0.0878
FLG 0.0365 0.13
WDR67 0.0384 0.0867
NFE2L3 0.0384 0.0867
RPILI 0.0384 0.0867
MEFV 0.0384 0.0867
HRNR 0.0434 0.112

Table F-D WeSME mutual exclusivity p-values between FU Module 3 (TTN, DMD, NEB) and other genes

gene module pv best pairwise p-value
MAP3K1 0.000181 0.0213
PIK3CA 0.000454 0.00451
GATA3 0.000597 0.00549
PCDH15 0.00204 0.121
TSC22D1 0.0105 0.21
RUNX1 0.0163 0.0319
FAT2 0.0192 0.121
TBX3 0.0258 0.179
LRPI 0.0317 0.162
TEX15 0.0317 0.162
0ODZ2 0.0317 0.162
MLLT4 0.0317 0.162
TG 0.0317 0.162
CSMD1 0.0371 0.122
HERC2 0.0391 0.168
MLL2 0.0391 0.0924
HCEFCl 0.0495 0.178
ITPR1 0.0495 0.178
CDC42BPA 0.0495 0.178
COL14A1 0.0495 0.178

Table F-E WeSME mutual exclusivity p-values between FU Module 5 (MUC4, MUC16, MUC12, MUC5B) and

other genes

gene module pv best pairwise p-value

FAT3 0.0381 0.15
DOCK11 0.0497 0.153

RBI1 0.0497 0.153
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HERC2 0.0497 0.153
CCDC66 0.0497 0.153
SHROOM4 0.0497 0.153
DNAH10 0.0255 0.111
DNAH3 0.0313 0.101
PIK3R1 0.0202 0.0843
PKHDILI1 0.0102 0.0576
DMD 0.0088 0.0476
MUC5B 0.0289 0.0662
HRNR 0.0289 0.0662
FLG 0.0292 0.059
RYR2 0.0188 0.0411
CDH1 0.0493 0.0675
MUC4 0.0278 0.0336
MUC16 0.0278 0.0336

Table F-F WeSME mutual exclusivity p-values between FU Module 6 (MAP3K1, MAP2K4) and other genes

gene module pv best pairwise p-value
TP53 1.30E-05 0.000282
MUCI2 0.00105 0.0595
USH2A 0.00419 0.1001
RYR2 0.0241 0.109
NEB 0.0368 0.234
PKHDIL1 0.0377 0.242
MLL3 0.0437 0.142
FRGI1B 0.044 0.127

Table F-G WeSME mutual exclusivity p-values between FU Module 7 (NCOR2, NCOA3, MED23, TBL1XR1) and

other genes
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