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Abstract

We refer to the paper ”Long-time analytic approximation of large stochastic oscillators: simula-

tion, analysis and inference” by I. In this note we give details about the Drosophila circadian clock

system and use it to illustrate further the accuracy of distributions and simulations discussed in I.
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1 Drosophila circadian clock system

A schematic representation of the Drosophila circadian clock system, as provided in [1], is displayed

in Figure A. The oscillations are driven by the negative feedback exerted on the per and tim genes by

the complex formed from PER and TIM proteins following phosphorylation. The per and tim mRNA,

MP and MT , respectively, are transported into the cytosol where they are degraded and translated

into protein (P0 and T0). These proteins are multiply phosphorylated (PER: P0 → P1 → P2; TIM:

T0 → T1 → T2) and these modifications can be reversed by a phosphatase. The fully phosphorylated

form of the proteins is targeted for degradation and forms a complex, C, which is transported into the

nucleus in a reversible manner where the nuclear form of the PER–TIM complex, CN , represses the

transcription of per and tim genes.
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Figure A: Schematic representation of Drosophila circadian clock system [1]

The variables of the model along with the initial conditions (in nanomolar concentrations) used in

our implementation are provided in Table A.

variable description initial condition

MP PER mRNA 3.0975

P0 PER protein 0 1.2547

P1 PER protein 1 1.2302

P2 PER protein 2 1.7997

MT TIM mRNA 3.0975

T0 TIM protein 0 1.2346

T1 TIM protein 1 1.0577

T2 TIM protein 2 0.3593

C PER-TIM cytosolic complex 0.6230

CN PER-TIM nuclear complex 0.8178

Table A: The variables of Drosophila circadian clock system and the initial conditions (in nanomolar
concentrations) used to derive their ODE solution.

The parameter values used to derive the ODE solution of the system are provided in Table B.
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parameter description value measurement unit

vsP MP transcription 1.10 nMh−1

vsT MT transcription 1.00 nMh−1

vmP MP degradation 1.00 nMh−1

vmT MT degradation 0.70 nMh−1

vdP P2 degradation 2.20 nMh−1

ksP MP translation 0.90 h−1

ksT MT translation 0.90 h−1

k1 C → CN 0.80 h−1

k2 CN → C 0.20 h−1

k3 P2 + T2 → C 1.20 h−1

k4 C → P2 + T2 0.60 h−1

KmP MP enzymatic degradation 0.20 h−1

KmT MT enzymatic degradation 0.20 h−1

KIP MP Hill coefficient 1.00 h−1

KIT MT Hill coefficient 1.00 h−1

KdP P2 enzymatic degradation 0.20 h−1

KdT T2 enzymatic degradation 0.20 h−1

kd linear degradation 0.01 h−1

kdC C degradation 0.01 h−1

kdN CN degradation 0.01 h−1

vdT T2 degradation 3.00 nMh−1

K1P P0 →P1 enzymatic 2.00 h−1

K1T T0 →T1 enzymatic 2.00 h−1

K2P P1 → P0 enzymatic 2.00 h−1

K2T T1 → T0 enzymatic 2.00 h−1

K3P P1 → P2 enzymatic 2.00 h−1

K3T T1→ T2 enzymatic 2.00 h−1

K4P P2 → P1 enzymatic 2.00 h−1

K4T T2 → T1 enzymatic 2.00 h−1

V1P P0 →P1 8.00 nMh−1

V1T T0 →T1 8.00 nMh−1

V2P P1 → P0 1.00 nMh−1

V2T T1 → T0 1.00 nMh−1

V3P P1 → P2 8.00 nMh−1

V3T T1→ T2 8.00 nMh−1

V4P P2 → P1 1.00 nMh−1

V4T T2 → T1 1.00 nMh−1

n Hill power 4.00 NA

Table B: The parameters of Drosophila circadian clock system and the values used to derive their ODE
solution.
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The ODE system for the Drosophila circadian clock is

ṀP = vsP
Kn

IP

Kn
IP + Cn

N

− vmP
MP

KmP +MP
− kdMP

Ṗ0 = ksPMP − V1P
P0

K1P + P0
+ V2P

P1

K2P + P1
− kdP0
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P2
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IT
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N
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KmT +MT
− kdMT

Ṫ0 = ksTMT − V1T
T0

K1T + T0
+ V2T

T1
K2T + T1

− kdT0

Ṫ1 = V1T
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T1
K2T + T1

− V3T
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K3T + T1
+ V4T

T2
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Ṫ2 = V3T
T1

K3T + T1
− V4T

T2
K4T + T2

− k3P2T2 + k4C − vdT
T2

KdT + T2
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Ċ = k3P2T2 − k4C − k1C + k2CN − kdCC

ĊN = k1C − k2CN − kdNCN .

The SSA trajectories are derived using the rates provided in Table 1 of [1].

In the simulations of the Drosophila circadian clock provided in the next section and in I, we

consider five values of the system size Ω = 200, 300, 500, 1000 and 3000. In Table C, we provide the

approximate ranges of the molecular numbers for each species observed in our simulations. Notice the

increase in the maximum number of molecules with increasing Ω, but also the decrease in the length

of the range in terms of concentrations, X(t) = Y (t)/Ω, that reflects the lower levels of stochasticity

for increasing Ω.

variable Ω = 200 Ω = 300 Ω = 500 Ω = 1000 Ω = 3000

MP (0, 800) (0, 1200) (0, 1900) (0, 3500) (40, 10000)

P0 (0, 500) (0, 600) (0, 900) (0, 1600) (10, 4500)

P1 (0, 500) (0, 700) (0, 1000) (0, 1700) (10, 4700)

P2 (0, 1400) (0, 1700) (0, 2500) (0, 4300) (30, 10600)

MT (0, 800) (0, 1200) (0, 1900) (0, 3500) (40, 10000)

T0 (0, 400) (0, 600) (0, 900) (0, 1600) (10, 4000)

T1 (0, 400) (0, 500) (0, 800) (0, 1400) (10, 3900)

T2 (0, 200) (0, 300) (0, 400) (0, 600) (10, 1400)

C (6, 400) (10, 500) (30, 800) (75, 1400) (280, 3700)

CN (60, 700) (100, 900) (200, 1400) (400, 2600) (1300, 7000)

Table C: The approximate ranges of the molecular numbers, Y (t), of each of the species of Drosophila
circadian clock system in simulations derived using SSA for various system sizes Ω.

For more details considering the Drosophila circadian clock system see [1].
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2 Exact simulations
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Figure B: Exact stochastic simulation of the Drosophila circadian clock system in three different system
sizes, Ω = 200 (top panel), Ω = 500 (middle panel), Ω = 1000 (bottom panel). A stochastic trajectory
obtained by running the SSA over the time-interval t ∈ [0, 8.5τ ] is displayed on the left panels and SSA
samples (R = 3000) at times t = τ, 2τ, . . . , 8τ are displayed on the right panels. Two (out of 10) of
the species are displayed (per mRNA MP (x-axis) and nuclear PER-TIM complex CN (y-axis)). The
black solid curve is the large volume, Ω→∞, limit cycle solution.
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3 Exact transversal distributions: normality
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Figure C: Quantile-Quantile (Q-Q) plots of the distribution of the first intersection in the r-th pass,

Q
(r)
k , in transversal coordinates k = 2, 3, . . . , 10 for r = 1, 2, . . . , 8.
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4 pcLNA and exact transversal distributions
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Figure D: CDF plots of the transversal distributions Q
(r)
k under the pcLNA (red line) and the SSA

(empirical CDF, crosses) for transversal coordinates k = 2, 3, . . . , 10 and round r = 1, 2, . . . , 8.
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Figure E: Comparison of pcLNA and exact transversal distributions in systems sizes Ω = 200 (top
panel), Ω = 500 (middle panel), Ω = 1000 (bottom panel).(A) CDF plots under the pcLNA (red line)

and the SSA (empirical CDF, crosses) of the first intersection in the r-th pass, Q
(r)
k , in transversal

coordinates k = 2, 3, . . . , 10 for r = 4. (B) KS distances between the Q
(r)
k distributions under pcLNA

and SSA, r = 1, 2, . . . , 8, k = 2, 3, . . . , 10.
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5 Less frequent correction
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Figure F: Comparison between pcLNA and SSA simulations for correction frequency 24h. This is 3
times less frequent than the correction used in the simulations presented in Fig. 9 of I and the figures
in the next section. Panels (A) contain the samples produced by the pcLNA and the exact simulation
(SSA) at time-points, t = 1τ, 2τ, . . . , 8τ , for Ω = 300 (left panel) and Ω = 1000 (right panel), and
panels (B) the KS distances between the empirical distributions of pcLNA and the SSA for each
system variable (colored bars) for two system sizes Ω = 300 (left panel) and Ω = 1000 (right panel).

Less frequent phase correction in pcLNA algorithm has substantial impact on pcLNA simulations.

However, the precision of the approximation seems to stabilise after the third round with KS distances

much smaller compared to standard LNA. The median CPU times under this correction frequency are

0.45secs for Ω = 300 and 0.22secs for Ω = 1000, compared to 0.45secs and 0.42secs, respectively, for

correction frequency 6h. The reason for the absence of speed improvement for Ω = 300 is because at this

system size and with less corrections negative populations appear more frequently and therefore SSA

simulation are used more frequently, as explained in Sec. 13 in S1, and therefore any improvements due

to applying correction less frequently are counterbalanced. For Ω = 1000, where negative populations

are much less likely the speed improvement, is almost twofold.
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6 Comparison between different simulation algorithms
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Figure G: Comparison between pcLNA, tau-leap and CLE simulation algorithms for the Drosophila
circadian clock. This figure has the same form as Fig. 9 of I, but (A), (B) and (C) panels contain results
for Ω = 1000. As in Fig. 9 of I, the parameter values ε = 0.002 and ∆t = 0.002 for the tau-leap and
the CLE approximation are the largest values to achieve precision similar to the pcLNA simulation,
and the results displayed here are simulated using these values.
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Figure H: Comparison between pcLNA, tau-leap and CLE simulation algorithms for the Drosophila
circadian clock. This figure has the same form as Fig. 9 of I, but (A), (B) and (C) panels contain results
for Ω = 3000. As in Fig. 9 of I, the parameter values ε = 0.002 and ∆t = 0.002 for the tau-leap and
the CLE approximation are the largest values to achieve precision similar to the pcLNA simulation,
and the results displayed here are simulated using these values.

7 Light entrained Drosophila Circadian Clock

The Light entrained Drosophila circadian clock system first proposed in [2] is exactly the same with

the Drosophila circadian clock without entrainment, apart from the degradation rate, vdT , of the

phosphorylated TIM protein, T2, which instead of being equal to 3.4, it is equal to 4 during the

day-time (6-18h) and equal to 2 during night-time (18h-6h).
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We first compare the LNA distributions at fixed times with the empirical distributions derived

using SSA simulations. As we can see in Fig. I, despite that the empirical distributions of the exact

stochastic model do not spread along the curved limit cycle as much as the corresponding distributions

for the system without entrainment (see Fig. 3 of I) and that the spread of the distributions in the

light entrained system appears to stabilise even after the second cycle, the standard LNA distributions

still do not approximate well these distributions.
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Figure I: Comparison between LNA and exact simulations in the light entrained Drosophila circadian
clock. (a) Samples (in nanomolar concentrations) obtained from the SSA simulation algorithm (red
crosses) and 0.01, 0.05, 0.40 contours of the LNA probability density (black ellipsoids) at fixed times,
t = τ, 2τ, 3τ, 4τ (τ : minimal period). The limit cycle ODE solution is also displayed (black solid line).
(b) KS distance between the empirical distribution of SSA samples and the LNA distribution of each
species (different colors, see legend) at the fixed times. The threshold level is also displayed (black
solid line). The system size is Ω = 300.

On contrary, as we can see in Fig. J, the pcLNA distributions appear to approximate well the

empirical transversal distributions derived under the SSA.
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Figure J: Comparison of pcLNA and exact empirical transversal distributions of the light entrained

Drosophila circadian clock. (A) CDF plots of the transversal distributions Q
(r)
k under the pcLNA

(red line) and the SSA (empirical CDF, colored dashed line, see legend) in transversal coordinates

k = 2, 3, . . . , 10 and round r = 1, 2, 3, 4. (B) KS distances between the Q
(r)
k distributions under the

pcLNA and the SSA, k = 2, 3, . . . , 10, r = 1, 2, 3, 4. The system size is Ω = 300.
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