[bookmark: _GoBack]Using CHARMM Force Fields and CHARM-GUI With OpenMM

OpenMM scripts can directly read CHARMM input files. This enables the use of all the powerful setup tools in the CHARMM ecosystem that a user might be familiar with such as CHARMM-GUI, VMD, CGenFF, etc. This allows users who are already working in the CHARMM environment to harness the GPU speeds that OpenMM provides without having to modify their simulation system description files. It also allows them to use CHARMM force fields that are not already included in OpenMM such as the general CHARMM force field (CGenFF).

This example demonstrates how to use CHARMMM files that were generated with CHARMM-GUI in an OpenMM script. The OpenMM Python layer includes several classes to load CHARMM files. The CharmmPsfFile class reads the PSF file and instantiates a chemical structure. One can then call the createSystem() method on it to create an OpenMM system object. For the atomic coordinates, a regular PDB file can be used, or the CharmmCrdFile or CharmmRstFile classes can be used to read CHARMM coordinate files. Files containing force field definitions come in a variety of formats such as prm, par, top, rtf, inp and str. These files are loaded into a CharmmParameterSet object, which is then included as the first parameter when createSystem() is called on the chemical structure. For this example, the membrane builder in CHARMM-GUI was used to generate the input files for the B2AR in a POPC lipid membrane. The membrane builder provides a straightforward way to go from the RCSB X-ray structure to the protein embedded in a membrane with all the relevant CHARMM input files.

from simtk.openmm.app import *
from simtk.openmm import *
from simtk.unit import *
from sys import stdout, exit, stderr

Load CHARMM files
psf = CharmmPsfFile('step5_charmm2omm.psf')
pdb = PDBFile('step5_charmm2omm.pdb')
params = CharmmPsfFile('par_all36_prot.rtf', 'top_all36_prot.prm',
 'par_all36_lipid.rtf', 'top_all36_lipid.prm',
 'toppar_water_ion.str')

Create an OpenMM system by calling createSystem on psf
system = psf.createSystem(params, nonbondedMethod=NoCutoff,
 nonbondedCutoff=1*nanometer, constraints=HBonds)
integrator = LangevinIntegrator(300*kelvin, # Temperature of head bath
 1/picosecond, # Friction coefficient
 0.002*picoseconds) # Time step

simulation = Simulation(psf.topology, system, integrator)
simulation.context.setPositions(pdb.positions)
simulation.minimizeEnergy()

Set up the reporters to report energies every 1000 steps.
simulaiton.reporters.append(PDBReporter('output.pdb', 1000))
simulation.reporters.append(StateDataReporter(stdout, 1000, step=True,
 potentialEnergy=True, temperature=True))
run simulation
simulation.step(10000)

CHARMM-GUI also generates a more elaborate set of OpenMM scripts to run equilibration and the production simulation that are very straightforward to use. A tutorial that walks through this process is provided here. When OpenMM is selected in the last step, CHARMM-GUI provides all the relevant OpenMM scripts in the downloaded file. The parameters and arguments for OpenMM objects and functions are provided in the inp files for all equilibration steps and production. This makes it simple to change parameters such as the time step or electrostatic cutoff method.

Using Amber Force Fields With OpenMM

OpenMM allows users to model their systems using Amber and provide prmtop and inpcrd files as input. This allows users more familiar with the Amber modeling environment to continue using their setup tools, while harnessing the speed and versatility of OpenMM. This also allows the use of non-standard force fields that have been published for use with Amber, such as metal ion models where dummy atoms are applied to mimic particular coordination geometries. Furthermore, this is facilitated by OpenMM's support for extra particles—particles that are not ordinary atoms, such as these metal dummy atoms, virtual sites in many water models, etc.

This example illustrates the use of Amber's tleap to set up a simulation of the histone methyltransferase SETD2 (Uniprot: Q9BYW2), including three structural Zn2+ cations described with the tetrahedral Cationic Dummy Atom Approach (CADA: DOI:10.1007/s008940050119, Pang lab).

In addition to tleap we use two other programs, PDBFixer and MDTraj, to prepare the files for simulating. Rather than running each program separately, we use a Python script to automate the whole process. This helps reproducibility.

We begin from the 4H12 PDB file, and use PDBFixer to add missing residues (only those in the middle of the chain) and missing heavy atoms. The CADA model requires particular naming of residues in the PDB file (e.g. renaming the ligating cysteines from CYS to CYM), so we use MDTraj to make these changes and to remove unwanted water and ligand residues. Finally, tleap is run to add hydrogens and the Zn2+ dummy atoms, and to parametrize the system. We use the ff99SBildn force field and znb.lib, and frcmod.zinc files from the CADA model (downloaded from Pang lab). The prmtop and inpcrd files are saved for simulation in OpenMM.

from pdbfixer import PDBFixer
from simtk.openmm.app import PDBFile
import mdtraj as md

clean up the original PDB file and add missing residues and heavy atoms
fixer = PDBFixer('pdb4h12.ent')

fixer.findMissingResidues()
only add missing residues in the middle of the chain, do not add terminal ones
chains = list(fixer.topology.chains())
keys = fixer.missingResidues.keys()
missingResidues = dict()
for key in keys:
 chain = chains[key[0]]
 if not (key[1] == 0 or key[1] == len(list(chain.residues()))):
 missingResidues[key] = fixer.missingResidues[key]
fixer.missingResidues = missingResidues

fixer.findMissingAtoms()
fixer.addMissingAtoms()

PDBFile.writeFile(fixer.topology, fixer.positions, open('4h12_fixed.pdb', 'w'))

keep only protein and zinc ions
traj = md.load('4h12_fixed.pdb')
traj = traj.atom_slice(traj.top.select('(protein and not resname SAH) or resname ZN'))

implement changes necessary for the use of the dummy atom Zn2+ model
change residue name of the zincs from ZN to ZNB, and atom names from ZN to Zn
for residue in traj.top.chain(1).residues:
 residue.name = 'ZNB'
for atom in traj.top.chain(1).atoms:
 atom.name = 'Zn'

change name of cysteines coordinating zincs to CYM (deprotonated cysteine)
for residue in traj.top.chain(0).residues:
 if residue.index in [86, 92, 82, 69, 54, 52, 73, 184, 233, 238, 231]:
 residue.name = 'CYM'

traj.save('4h12_fixed_protein_zn_only.pdb')

save the tleap script to file
with open('leaprc.setd2', 'w') as f:
 f.write('''
source oldff/leaprc.ff99SBildn
addAtomTypes { { "DZ" "Zn" "sp3" } { "Zn" "Zn" "sp3" } }
loadOff znb.lib
loadamberparams frcmod.zinc
x = loadPdb 4h12_fixed_protein_zn_only.pdb
addIons x Cl- 0
solvateBox x TIP3PBOX 10.0
savePdb x topology.pdb
saveAmberParm x input.prmtop input.inpcrd
quit
''')

run tleap
os.system('tleap -f leaprc.setd2')

To run the simulation, we load the prmtop and inpcrd files by creating AmberPrmtopFile and AmberInpcrdFile objects. Next, the System is created by calling the createSystem() method on the AmberPrmtopFile object. Next, the LangevinIntegrator and the Simulation are set up, using the topology from the AmberPrmtopFile and positions from the AmberInpcrdFile. In this example, we use the CUDA platform with mixed precision. The simulation is energy minimized and equilibrated for 100 steps. Reporters are attached and the production simulation propagated for 50 ns.

from __future__ import print_function
from simtk.openmm import app
import simtk.openmm as mm
from simtk import unit
from sys import stdout

load in Amber input files
prmtop = app.AmberPrmtopFile('input.prmtop')
inpcrd = app.AmberInpcrdFile('input.inpcrd')

prepare system and integrator
system = prmtop.createSystem(nonbondedMethod=app.PME,
 nonbondedCutoff=1.0*unit.nanometers, constraints=app.HBonds, rigidWater=True,
 ewaldErrorTolerance=0.0005)
integrator = mm.LangevinIntegrator(300*unit.kelvin, 1.0/unit.picoseconds,
 2.0*unit.femtoseconds)
integrator.setConstraintTolerance(0.00001)

prepare simulation
platform = mm.Platform.getPlatformByName('CUDA')
properties = {'CudaPrecision': 'mixed'}
simulation = app.Simulation(prmtop.topology, system, integrator, platform,
 properties)
simulation.context.setPositions(inpcrd.positions)

minimize
print('Minimizing...')
simulation.minimizeEnergy()

equilibrate for 100 steps
simulation.context.setVelocitiesToTemperature(300*unit.kelvin)
print('Equilibrating...')
simulation.step(100)

append reporters
simulation.reporters.append(app.DCDReporter('trajectory.dcd', 1000))
simulation.reporters.append(app.StateDataReporter(stdout, 1000, step=True,
 potentialEnergy=True, temperature=True, progress=True, remainingTime=True,
 speed=True, totalSteps=25000000, separator='\t'))

run 50 ns of production simulation
print('Running Production...')
simulation.step(25000000)
print('Done!')

Simulating Drude Particles

This example illustrates the use of the CHARMM polarizable force field. This force field introduces some complications beyond the scripts shown in the main text. First, it uses various kinds of "extra particles" to represent special interaction sites: Drude particles to allow polarization and virtual sites to represent lone pairs. These extra particles must be added to the molecular topology before it can be simulated.

This is done using the Modeller class. To use it, one provides an initial topology and atomic positions, then calls methods on it to modify them in a variety of ways. This example uses the addExtraParticles() method, which adds whatever particles are needed for a given force field. The same method can be used for other force fields that require extra particles, such as the TIP4P or TIP5P water models.

Second, special integration methods are needed to simulate systems with Drude particles. For this example, we use a DrudeSCFIntegrator. This is an integrator that first computes the atom positions based on the equations of motion, then performs an energy minimization to select positions for the Drude particles.

from simtk.openmm.app import *
from simtk.openmm import *
from simtk.unit import *
pdb = PDBFile('input.pdb')
forcefield = ForceField('charmm_polar_2013.xml')
modeller = Modeller(pdb.topology, pdb.positions)
modeller.addExtraParticles(forcefield)
system = forcefield.createSystem(modeller.topology, nonbondedMethod=PME,
	nonbondedCutoff=1*nanometer, constraints=HBonds)
integrator = DrudeLangevinIntegrator(300*kelvin, 1/picosecond, 1*kelvin,
	1/picosecond, 0.002*picoseconds)
simulation = Simulation(modeller.topology, system, integrator)
simulation.context.setPositions(modeller.positions)
simulation.context.setVelocitiesToTemperature(300*kelvin)
simulation.reporters.append(DCDReporter('output.pdb', 1000))
simulation.reporters.append(StateDataReporter('output.log', 1000, time=True, potentialEnergy=True, temperature=True))
simulation.step(1000000)

Alchemical Free Energy

OpenMM's custom forces—which allow the programmer to express a potential algebraically, potentially with multiple parameters that can be adjusted on the fly—allow a great deal of flexibility and simplicity in encoding potentials while still achieving high performance on GPUs. One common use of this facility is to convert standard interactions (such as Lennard-Jones potentials) into alchemically-modified potentials for the purposes of computing free energy differences. The alchemical free energy code YANK, for example, uses a variety of custom forces to represent alchemically-modified potentials for protein-ligand alchemical binding free energy calculations.

As a simple example of how this is facilitated by custom forces, consider computing the chemical potential of liquid argon by estimating the free energy of alchemically annihilating a Lennard-Jones particle. First, we create a simple Lennard-Jones fluid to represent liquid argon at 120 K and 80 atm, which can be conveniently done using the testsystems module of the conda-installable openmmtools package:

from simtk import openmm, unit

Create a Lennard-Jones fluid
pressure = 80*unit.atmospheres
temperature = 120*unit.kelvin
collision_rate = 5/unit.picoseconds
timestep = 2.5*unit.femtoseconds
from openmmtools.testsystems import LennardJonesFluid
sigma = 3.4*unit.angstrom; epsilon = 0.238 * unit.kilocalories_per_mole
fluid = LennardJonesFluid(sigma=sigma, epsilon=epsilon)
[system, positions] = [fluid.system, fluid.positions]

Add a barostat
barostat = openmm.MonteCarloBarostat(pressure, temperature)
system.addForce(barostat)

To allow one of the Lennard-Jones particles to be alchemically eliminated, we create a CustomNonbondedForce that will compute the interactions between the alchemical particle and the remaining chemical particles using a softcore potential. The alchemically-modified particle has its Lennard-Jones well depth (epsilon parameter) set to zero in the original NonbondedForce, while the CustomNonbondedForce is set to evaluate only the interactions between the alchemically-modified particle and the remaining particles using addInteractionGroup() to specify only interactions between these groups are to be computed. A global context parameter lambda is created to control the coupling of the alchemically-modified particle with the rest of the system during the simulation. The Lennard-Jones parameters sigma and epsilon are implemented as per-particle parameters, though this is not strictly necessary in this case since all particles are equivalent.

Retrieve the NonbondedForce
forces = { force.__class__.__name__ : force for force in system.getForces() }
nbforce = forces['NonbondedForce']

Add a CustomNonbondedForce to handle only alchemically-modified interactions
alchemical_particles = set([0])
chemical_particles = set(range(system.getNumParticles())) - alchemical_particles
energy_function = 'lambda*4*epsilon*x*(x-1.0); x = (sigma/reff_sterics)^6;'
energy_function += 'reff_sterics = sigma*(0.5*(1.0-lambda) + (r/sigma)^6)^(1/6);'
energy_function += 'sigma = 0.5*(sigma1+sigma2); epsilon = sqrt(epsilon1*epsilon2);'
custom_force = openmm.CustomNonbondedForce(energy_function)
custom_force.addGlobalParameter('lambda', 1.0)
custom_force.addPerParticleParameter('sigma')
custom_force.addPerParticleParameter('epsilon')
for index in range(system.getNumParticles()):
 [charge, sigma, epsilon] = nbforce.getParticleParameters(index)
 custom_force.addParticle([sigma, epsilon])
 if index in alchemical_particles:
 nbforce.setParticleParameters(index, charge*0, sigma, epsilon*0)
custom_force.addInteractionGroup(alchemical_particles, chemical_particles)
system.addForce(custom_force)

We then create a LangevinIntegrator and Context to run the simulation, and run a series of simulations at different values of lambda by using context.setParameter() to update the alchemical parameter on the fly. For each configuration sample that is collected, we can easily scan through the energy at different lambda values by simply alternating between context.setParameter() to update lambda and context.getState() to retrieve potential energies at the new alchemical state.

Create a context
integrator = openmm.LangevinIntegrator(temperature, collision_rate, timestep)
context = openmm.Context(system, integrator)
context.setPositions(positions)

Minimize energy
print('Minimizing energy...')
openmm.LocalEnergyMinimizer.minimize(context)

Collect data
nsteps = 2500 # number of steps per sample
niterations = 50 # number of samples to collect per alchemical state
import numpy as np
lambdas = np.linspace(1.0, 0.0, 10) # alchemical lambda schedule
nstates = len(lambdas)
u_kln = np.zeros([nstates,nstates,niterations], np.float64)
kT = unit.AVOGADRO_CONSTANT_NA * unit.BOLTZMANN_CONSTANT_kB * integrator.getTemperature()
for k in range(nstates):
 for iteration in range(niterations):
 print('state %5d iteration %5d / %5d' % (k, iteration, niterations))
 # Set alchemical state
 context.setParameter('lambda', lambdas[k])
 # Run some dynamics
 integrator.step(nsteps)
 # Compute energies at all alchemical states
 for l in range(nstates):
 context.setParameter('lambda', lambdas[l])
 u_kln[k,l,iteration] = context.getState(getEnergy=True).getPotentialEnergy() / kT

Finally, the multistate Bennett acceptance ratio (MBAR) is used to estimate the free energy of annihilating the particle using the conda-installable pymbar package. In order to estimate how much data must be discarded to equilibration, we use a scheme for automated equilibration detection and subsequent extraction of decorrelated samples found in the pymbar.timeseries module.

Estimate free energy of Lennard-Jones particle insertion
from pymbar import MBAR, timeseries
Subsample data to extract uncorrelated equilibrium timeseries
N_k = np.zeros([nstates], np.int32) # number of uncorrelated samples
for k in range(nstates):
 [nequil, g, Neff_max] = timeseries.detectEquilibration(u_kln[k,k,:])
 indices = timeseries.subsampleCorrelatedData(u_kln[k,k,:], g=g)
 N_k[k] = len(indices)
 u_kln[k,:,0:N_k[k]] = u_kln[k,:,indices].T
Compute free energy differences and statistical uncertainties
mbar = MBAR(u_kln, N_k)
[DeltaF_ij, dDeltaF_ij, Theta_ij] = mbar.getFreeEnergyDifferences()

A downloadable version of this example is available on github. A more fully featured toolkit for re-encoding standard OpenMM forces as alchemically-modified custom forces is available via the conda-installable alchemy package.

Using CHARMM Force Fields and CHARM-GUI With
Openhh

o e e Py g
o e R e e e

T et
e e

