## S1 Appendix

The ordinary least squares solution, as mentioned for Tikhonov regularization, is:

$$
\hat{x}_{\lambda}^{O L S}=\left(D^{T} D\right)^{-1} D^{T} A_{\lambda}
$$

In the case where D is orthogonal, then $D^{T}=D^{-1}$, and this simply becomes:

$$
\begin{equation*}
\hat{x}_{\lambda}^{O L S}=D^{T} A_{\lambda} \tag{1}
\end{equation*}
$$

Note also that the LASSO minimization problem can be written in expanded form as (note that the vector signs have been removed from x for clarity):

$$
\min _{x} x_{\lambda}^{T} D^{T} D x_{\lambda}-x_{\lambda}^{T} D^{T} A_{\lambda}-A_{\lambda}^{T} D x_{\lambda}+A_{\lambda}^{T} A_{\lambda}+\alpha\|L x\|_{1}
$$

which simplifies to:

$$
\begin{equation*}
\min _{x} x_{\lambda}^{T} x_{\lambda}-x_{\lambda}^{T} D^{T} A_{\lambda}-A_{\lambda}^{T} D x_{\lambda}+A_{\lambda}^{T} A_{\lambda}+\alpha\|L x\|_{1} \tag{2}
\end{equation*}
$$

Note that,

$$
A_{\lambda}^{T}=\left(x_{\lambda}^{O L S}\right)^{T} D^{T}
$$

Using this result and $A_{\lambda}=D \hat{x}_{\lambda}^{O L S}$ we arrive at

$$
\min _{x} x_{\lambda}^{T} x_{\lambda}-x_{\lambda}^{T} x_{\lambda}^{O L S}-\left(x_{\lambda}^{O L S}\right)^{T} x_{\lambda}+\alpha\|L x\|_{1}
$$

Which for a single entry $j$, using $L=I$, can be written as

$$
\begin{equation*}
\min _{x} x_{j}^{2}-2 x_{j}^{O L S} x_{j}+\alpha\left|x_{j}\right|=\min _{x} O(x) \tag{3}
\end{equation*}
$$

with $O$ simply being the objective function.
This can be split into two scenarios:

1. $x_{j}^{O L S} \geq 0$ : This means that $x_{j} \geq 0$ because if it were negative, $O(x)$ in (3) could be lowered by making it positive. Now differentiating $O$ w.r.t $x_{j}$ and setting to zero we get:

$$
\begin{equation*}
x_{j}=2 x_{j}^{O L S}-\alpha \tag{4}
\end{equation*}
$$

However, as $x_{j} \geq 0$, then $\left(2 x_{j}^{O L S}-\alpha\right) \geq 0$, so we arrive at:

$$
\begin{equation*}
x_{j}=\left(2 x_{j}^{O L S}-\alpha\right)^{+}=\operatorname{sgn}\left(x_{j}^{O L S}\right)\left(2\left|x_{j}^{O L S}\right|-\alpha\right)^{+} \tag{5}
\end{equation*}
$$

2. $x_{j}^{O L S} \leq 0$ : Using the same reasoning this implies that $x_{j}<0$, and differentiating will result in the same answer.

Note that the result will hold for $L \neq I$, however, the value of alpha will be multiplied by some function $f\left(L, x_{i \neq j}\right)$

