
COMPARISON TO OTHER METHODS

ROI segmentation

ROIs can be determined with algorithms designed to detect either morphological[1–3] or activity[4–

6] features (e.g., pixels forming round fluorescent spots, or temporally correlated pixels, respectively). These

approaches have different advantages and shortcomings. Clearly, the information embedded in the temporal

dynamics of fluorescence can be exploited to obtain ROIs. However, activity-based methods are usually

prone to target highly active neurons, whose signal-to-noise ratios (SNRs) are strongest. One popular

activity-based approach uses independent component analysis (ICA) to parse the multi-dimensional signal

into a combination of sparse and statistically independent signals[4]. However, this algorithm becomes

impractical for large fields of view with several hundred ROIs, and assuming statistical independence (i.e.,

decorrelation) of signals can lead to an incorrect segmentation of single-neuron ROIs. Similarly, methods

that aggregate correlated pixels[6] may fuse adjacent temporally correlated neurons (indeed, neighboring

neurons in the mouse cortex tend to be more correlated than distant ones[7]). This is particularly problematic

for studies of neuronal coding, and clearly limiting when investigating neuronal activity correlations (e.g.,

when looking for neuronal assemblies). 

On the other hand, morphological-based approaches are computationally less intensive and, most

importantly, unbiased with respect to the neurons’ activity patterns. The caveat of this approach is that it may

result in relatively imprecise ROI perimeters, and could potentially miss ROIs with low baseline

fluorescence in weakly labeled imaged regions (for example, due to the spatially non-uniform staining of

synthetic dye injections).

Our toolbox implements a more conservative morphological-based algorithm. To avoid segmentation

problems of the imaged optical planes with uneven fluorescent labeling, the segmentation is performed on a

spatially normalized image avgImgNorm of the acquired optical plane (see ROI segmentation in The pre-

processing module). Importantly, the morphological algorithms presented here performed very well in the

different preparations and the techniques studied (Fig. 2). Nevertheless, the GUI allows the user to skip the

automatic ROI detection. In this case, the ROIs can be drawn manually, or a hexagonal grid of ROIs of a

desired size can be implemented. Furthermore, the pipeline allows the import of ROIs obtained with other

methods, such as the promising spatio-temporal hybrid approaches that are emerging[8], which seems to

perform remarkably well in demixing fluorescent signals from potentially overlapping neuronal sources. 

Inference of neuronal activations from fluorescence transients

Calcium imaging is usually performed to monitor neuronal spiking activity. However, inferring spikes from

fluorescence fluctuations is a complicated computational problem, due to the complex relationship between

these two variables. The reporter’s fluorescence is a non-linear function of intracellular calcium, and the

latter is also non-linearly related to the recent neuronal activity history. However, different fluorescence

deconvolution or template matching methods have been proposed to infer estimates of spike trains and spike-



rate dynamics[8–11]. Despite not accounting for the non-linear spikes-fluorescence coupling, these

algorithms have been reported to be fairly effective. Nevertheless, their performance critically depends on

many experimental factors, requiring parameter tuning that usually involves electrophysiological recordings.

Moreover, neurons show diverse relationships between the number of spikes fired and their fluorescence

changes[12], therefore the parameters obtained for one set of neurons will not necessarily apply to other sets

of neurons or experiments. Hence, we opted to keep signal filtering as minimal as possible, and implemented

algorithms to detect significant fluorescent transients that can confidently be associated with neuronal

activity. Importantly, as in deconvolution and template matching methods, our framework allows the

extraction of fluorescence transients whose temporal dynamics are compatible with the calcium reporter

biophysics (i.e., its decay time constant, t). Revealing these significant transients is particularly important for

detecting neuronal activations in behaving animals on a single-trial basis, where trial-averaging is precluded

or sub-optimal[13], especially when working with low SNR signals. 

Detection of functional assemblies

The identification of assemblies in large neuronal datasets is still an open problem in neuroscience.

Template-matching studies have been successful in revealing the activation dynamics of a predefined

population pattern[14]. These are supervised learning algorithms, since they work on labeled data (i.e., the

given pattern of interest). However, to reveal hidden structure from unlabeled data, unsupervised learning

algorithms are necessary. Between these approaches, we can highlight pioneering studies seeking to assess

the presence of higher-order (i.e., higher than pair-wise) correlations in neuronal activity[15,16]. However,

these approaches only work for triplets in sets of a few tens of neurons, and did not identify the neurons that

participated in the correlations. More recently, statistical models have been used to study the prevalence of

these high-order correlations in larger networks[17–21]. On the other hand, shuffling methods developed to

infer the significance of repeated firing sequences were recently tested on electrophysiological recordings of

~100 neurons[22,23]. However, these algorithms rely on temporally precise coordination across neurons and,

to our knowledge,  have never been applied to imaging studies. Promisingly, others[24–26] have applied

PCA to successfully isolate assemblies of correlated neurons, by clustering neurons according to their

loadings in each principal component (PC). Importantly, the use of the Marčenko–Pastur distribution

introduced by Peyrache and colleagues[24] (equation 1) allows the use of analytical and reliable statistics to

infer the significantly correlated signal in the data, instead of the surrogate methods implemented in previous

studies[15,16,22,23,27]. This is important, since there is still no clear agreement on which statistical features

should be preserved in these control surrogate datasets.

Despite these important advances, because PCA represents the data in a space of orthogonal PCs, using PCs

to delineate assemblies is misleading when neurons participate in different functional assemblies[28]. The

PCA-promax algorithm thus further extends this work, relaxing the orthogonality condition and using the

promax-rotated PCs to isolate assemblies. In this way, the algorithm is capable of detecting non-exclusive

assemblies that share ROIs. Furthermore, this approach is data-driven, without the need for any parameter



fine-tuning. In contrast, two of the most popular unsupervised clustering algorithms used in the field, k-

means clustering and hierarchical clustering (both also implemented in this toolbox), rely on the definition

of key parameters (i.e., the total number of clusters and a distance threshold for the cluster tree, respectively).

Furthermore, they bind members (e.g., neurons) to exclusive and non-overlapping clusters, which is

problematic considering the distributed coding of the brain, as previously discussed. Nevertheless, both k-

means and hierarchical clustering (and their variants) have previously been successfully used to detect

functional neuronal clusters in imaging experiments[6,29–33]. Remarkably, as we have previously

shown[34], the PCA-promax algorithm consistently and significantly outperforms both of these methods, as

quantified by two standard cluster quality indexes: 1) the Davies-Bouldin index, which measures the ratio of

the within-cluster scatter and the between-cluster separation; 2) th e normalized Hubert’s Γ index, which

quantifies the agreement between the observed pair-wise neuronal correlations and the ideal case, in which

pairs in assemblies have identical activities and pairs from different assemblies are uncorrelated. This

improvement is most probably due to the fact that while both k-means and hierarchical clustering group

variables according only to pair-wise distance measures (e.g., pair-wise correlation coefficients, euclidean

distances, etc), PCA is designed to reveal the global underlying correlational structure of the dataset through

an eigenvector-based multivariate analysis. Furthermore, this improvement could also be related to the

previously mentioned fact that k-means a n d hierarchical clustering seek to detect independent or

hierarchically organized clusters, respectively (see The module for detection of assemblies). While the former

clustering feature is clearly not in agreement with the distributed nature of brain processing, the latter

hierarchical character may be consistent with the hierarchical organization across brain regions, but is

probably not compatible with the functional organization at the neuronal sub-circuit level. Importantly, since

the PCA-promax method involves a dimensionality reduction procedure, it is effective in processing large

datasets, as demonstrated by the detection of biologically relevant assemblies in whole-brain zebrafish light-

sheet imaging experiments (~ 40,000 ROIs, Fig. 4). To our knowledge, few studies[6,32,35] have attempted

to perform clustering in these large-scale imaging datasets, and they have all used k-means clustering.

As discussed above, functional clustering of neuronal data is a complex mathematical procedure still under

development, and the PCA-promax method for detecting assemblies has limitations. The algorithm relies on

PCA, which implements linear data transformations. Thus, non-linear neuronal activity correlations (i.e.,

when plotting the activity of a neuron against another neuron produces a curved cloud of points) could result

in spurious assemblies. Most multivariate statistical analysis methods currently applied are also linear, but

those that rely on manifold learning algorithms[36,37] and network theory[27] could accommodate other

non-linear measures of activity similarity. Furthermore, when using PCA, there is no guarantee of a

straightforward interpretation of the PCs obtained in terms of biological or experimental variables. In

principle, this could be improved with the recently proposed demixed PCA technique[38], which reduces the

dimensionality of the data, taking into account task parameters (e.g., sensory or motor variables).

Furthermore, increasingly popular non-negative matrix factorization techniques[39], which unlike PCA

impose a positivity constraint to its components, may be more biologically interpretable in terms of positive

neuronal activations. Finally, the PCA-promax method is particularly suited to delineate discrete clusters of



ROIs that are engaged in brief events of collective activation. Thus, for population activations that present a

continuous and long-lasting evolution in time (e.g., propagating spatial waves, oscillations), this algorithm

would tend to discretize these dynamic phenomena in distinct patterns. For example, a wave would be

separated in a progression of distinct assemblies that represent different instances of the moving wavefront.

Therefore, particular care should be taken in the interpretation of the results in these kind of scenarios.

Nevertheless, this is not a specific problem of the PCA-promax algorithm, since time-evolving patterns are

usually problematic for all clustering methods.   

Comparison to other toolboxes

There are few software packages available for a comprehensive analysis of calcium imaging data, despite

several recent and important developments[8,40,41]. Here, we briefly describe these available toolboxes and

compare them to the one presented here. 

These available toolboxes are implemented in Matlab[8,40] and Python[8,41] programs, and they are all

focused on pre-processing analysis of imaging data. They include within-plane motion correction for laser

scanning microscopy[41], image segmentation to obtain neuronal ROIs, extraction of raw fluorescence

signals[8,40,41], and signal denoising and spike deconvolution[8,40]. In particular, the most salient feature

of the Tomek et al. package is its accelerated cell morphology-based segmentation algorithm, which can

detect ~100 ROIs in 256x256 pixel images in a few milliseconds, opening the possibility for online analysis.

On the other hand, Pnevmatikakis et al. use a powerful spatio-temporal analysis framework based on

constrained non-negative matrix factorization, capable of demixing spatially overlapping neurons, which

may prove important for tissue densely packed with somata.

Like the above described packages, this toolbox also performs data pre-processing and, as shown here, can

be efficiently applied to different fluorescent reporters, imaging techniques, and imaged regions (Figs. 2 and

5). In addition, the present toolbox also covers the correction for neuropil signal contamination, mapping of

functional neuronal responses and the analysis of population activity dynamics. Thus, this is the first protocol

for a toolbox that covers the complete workflow from raw data to the automatic display of results. For

example, Tomek et al. presented a supporting module to export fluorescence data along with stimulation time

tags, which the user could in turn use to additionally develop a mapping procedure of functional responses.

Here, we present an interactive response analysis module capable of automatically producing publication-

quality figures, rich in interpretable functional information (Fig. 6). Furthermore, our package performs

automatic cluster analysis for the detection of neuronal assemblies, even in whole-brain data (Pnevmatikakis

et al. only pre-processed and segmented this kind of large-scale data). Finally, it contains modules for

interactive and exploratory analysis of the neuronal population activity in the context of experimental and/or

behavioral events, which can be extremely useful when dealing with such complex and multivariate datasets.

With respect to its implementations, the toolbox is designed in a flexible manner that allows importing data

from other sources, and using separate modules in an autonomous way, bypassing preceding modules if



desired. No previous coding experience is required for its use, since interaction with the toolbox is

implemented through diverse graphical user interfaces (GUIs). On the other hand, command-based

packages[41] require more coding expertise, but can be run in batch mode without user interaction to

automatically process collections of data. Nevertheless, complete automatization typically comes at the

expense of a higher rate of data-processing errors, compared to pipelines that incorporate manual curation.
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