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S1 Text. Traditional cell polarity model coupled with membrane tension 
We also developed a traditional 2D cell polarity model coupled with membrane 
tension to verify the robustness of the mechano-chemical mechanism. In this 
model, we assume that a 2D cell represents the projection of a 3D cell on one 
plane; hence, the cell membrane overlaps with the cell cytosol, and both 
membrane-bound Rac-GTP and cytosolic Rac-GDP are distributed throughout 
the cell. The cell has the same shape as the phase field formulation, with a 10 
µm diameter. 
 

We added a term  to account for the positive feedback from F-actin ( ) to 

Rac-GTP ( ) (Fig 1a, [1-4]) to the original equations in the WP model 
(Equations S1a and b) and assume that the activation rate is linearly related to

. We add a third equation (Equation S1c) to incorporate the regulatory 

effects of Rac-GTP and membrane tension on F-actin polymerization. For the 
positive activation from Rac-GTP, we assume that the polymerization rate is 
linearly dependent on the concentration of Rac-GTP and the free 

polymerization rate of the branched F-actin is . For the inhibitory effect of 

membrane tension, we apply the Brownian ratchet model and assume that the 

polymerization rate is proportional to the factor  [5]. Here, F is 

primarily the force from membrane tension loaded on the filament [6, 7],  
is the work done by adding one monomer against the load ( is the half size of 

G-actin) [8], is the Boltzmann constant and is the temperature (310 K). 

We assume that = , where  denotes the pressure generated by 
membrane tension and represents the filament density of F-actin which 

pushes the membrane, to link F  with membrane tension and  [9]. We 

assume a linear relationship between  and the length density of F-actin 
with a converter parameter =0.2 µm, which is regarded as the average 

persistent length of F-actin [7, 10], to calculate . Therefore, =

(  denotes the basal value of F-actin). We assume that 	   is linearly 

correlated with membrane tension ( ) and	   ( ( )-1=1 mα µ ). As defined 

in the main text, mt f( ) = mt0 1+ λ f ds
Ω0∫( ) , thus 
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, where . Thus, the 

exponential term is . We use an equivalent substitute 

( )	  for simplification, which is treated 

as an effective F-actin concentration. Finally, the rate of F-actin 
depolymerization ( ) is assumed to be constant.  
 
 
Based on the assumptions above, the dynamics of the traditional cell polarity 
model with membrane tension are described using the following equations: 

	   	   	  

(1) 

 
We apply a two-dimensional geometry with a no flux boundary condition to our 

model. In the simulation, we utilize a matrix ( ) to define the shape of the cell. 

The value of  is 1 inside of the cell and 0 outside the cell. Moreover, the 

concentrations of Rac-GTP, Rac-GDP and F-actin are defined as	   ,  

and	   , respectively. The diffusion of Rac-GTP and Rac-GDP is calculated 

when	   =1. The external stimuli are described as same as the stimuli 

(Equations 4-5) used in the cell polarity model with the phase field formulation. 
The initial values of Rac-GTP, Rac-GDP and F-actin for polarization are 
uniform. The values of all parameters are listed in S2 Table.  
 
We ran the same type of simulations used with the cell polarity model with 
phase field formulation to test this traditional cell polarity model coupled with 
membrane tension. We confirmed that this model also generates similar 
features as the other previous published polarity models [11, 12], e.g., the 
formation of the steady-state spatial profiles of Rac-GTP (S1c Fig) and F-actin 
(S1d Fig) in a polarized cell in response to a transient gradient stimulus. 
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Furthermore, consistent with the cell polarity model with phase field 
formulation, this model generates results showing the inhibitory effect of 
membrane tension on cell polarity, e.g., the replication of Houk’s 
aspiration-release experiment and severing experiment (Fig 4b and d). 
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