S1. Calculating odd CMs

Calculating the CMs for odd power n is not straightforward because they are defined with absolute values as base. Here, we explain in detail the calculations of the first and third moments.

Using the identity $|a+b|=2 \max (a,-b)-a+b$, we obtain for the first moment:

$$
\begin{align*}
m_{\Delta t}^{1}(\theta)[\Theta] & \left.=\langle | d N_{\Delta t}+d B_{\Delta t}|/ \Delta t| \Theta(t)=\theta\right\rangle \\
& =\langle 2 \max (d B,-d N)-d B+d N\rangle / \Delta t \tag{1}
\end{align*}
$$

As in the main text, when no condition is specified in the average $\langle\cdot\rangle$, we refer to the mean conditioned on the orientation $\Theta=\theta$ prior to a tumble event. Since the mean of the increments $d B$ and $d N$ vanishes, we have:

$$
\begin{equation*}
m_{\Delta t}^{1}(\theta)[\Theta]=\langle 2 \max (d B,-d N)\rangle / \Delta t \tag{2}
\end{equation*}
$$

Next, we investigate the maximum function in cases when a tumble occurs or does not occur and when there is rightward $(d N<0)$ or leftward $(d N>0)$ tumbling. We obtain

$$
\begin{equation*}
\langle 2 \max (d B,-d N)\rangle / \Delta t \approx 2(1-\lambda \Delta t) 0.5 \frac{\langle | d B| \rangle}{\Delta t}+2 \lambda 0.5\langle | \beta| \rangle+2 \lambda 0.5\langle d B\rangle . \tag{3}
\end{equation*}
$$

Here, the first term on the right-hand side represents the case when no tumble occurs and when $d B>0$. This happens with probability $0.5(1-\lambda \Delta t)$ since the two increments are assumed to be uncorrelated. The second term on the right-hand side represents a rightward tumble ($d N<0$), where we assumed $|d B|<|d N|$ because typically the tumble angles are much larger than the thermally induced angular displacements. The third term appears for $d N>0$. However, as before, the mean of the Gaussian increment vanishes. Hence, we finally obtain:

$$
\begin{equation*}
m_{\Delta t}^{1}(\theta)[\Theta]=(1-\lambda \Delta t)\langle | d B| \rangle / \Delta t+\lambda\langle | \beta| \rangle . \tag{4}
\end{equation*}
$$

Similarly, we determine the third moment:

$$
\begin{align*}
m_{\Delta t}^{3}(x)[\Theta] & =\left\langle 2 \max \left(d N^{3}+d B^{3},-3 d N^{2} d B-3 d B^{2} d N\right)\right\rangle / \Delta t \tag{5}\\
& \left.\left.\left.\approx(1-\lambda \Delta t)\langle | d B\right|^{3}\right\rangle / \Delta t+\left.\lambda\langle | \beta\right|^{3}\right\rangle+6 \lambda \Delta t D_{\mathrm{rot}}\langle | \beta| \rangle . \tag{6}
\end{align*}
$$

The first term in the second line refers to a situation without tumbling such that the second argument of the maximum function in the first line vanishes. The second term occurs for leftward tumbling $(d N>0)$, again assuming $|d B|<|d N|$. Finally, for rightward tumbling $(d N<0)$, the second argument of the maximum function is larger than the first and only the last term $3 d B^{2} d N$ has a non-zero average.

