
Appendix A. Derivation of Length Asymmetry Ratio (𝝀𝒍) Given Branching Angles, 1 

Here, we relate the length asymmetry ratio (𝜆𝑙) to the optimal branching solutions (𝜃𝑖) 2 

and the geometry of the unshared endpoints (i.e., the vertices 𝑉𝑖). We denote the 3 

lengths of the sides of the triangle that correspond to 𝑉1𝑉2, 𝑉0𝑉2, and 𝑉0𝑉1 as 𝑣0, 𝑣1, 4 

and 𝑣2, respectively (Fig A1). We first prove two Lemmas that lead to the derivation of 5 

the asymmetric length ratio. 6 

Lemma 1: Let the intersection of the line between the points 𝑉0 and 𝐽 with the line 𝑉1𝑉2 7 

be called 𝐾 and the angle defined by the three points 𝑉0𝐾𝑉1
̂  be called  𝜓 (Fig A1). Using 8 

these definitions and the other labeling in Fig. A1, the following relationships holds 9 

|𝑉1𝐾|

|𝑉2𝐾|
=

𝑙1 sin 𝜃2

𝑙2 sin 𝜃1
=

𝑣2 sin 𝜑1

𝑣1 sin𝜑2
 10 

Proof: By the law of sines applied to the triangles 𝑉0𝑉1𝐾 and 𝑉0𝑉2𝐾, we have: 11 

sin𝜓

𝑣2
=

sin𝜑1

|𝑉1𝐾|
,

sin(𝜋 − 𝜓)

𝑣1
=

sin𝜑2

|𝑉2𝐾|
 12 

Since sin(𝜋 − 𝜓) = sin𝜓, dividing these equations yields 
|𝑉1𝐾|

|𝑉2𝐾|
=

𝑣2 sin𝜑1

𝑣1 sin𝜑2
. Applying a 13 

similar approach to triangles 𝐽𝑉1𝐾 and 𝐽𝑉2𝐾, we have 
|𝑉1𝐾|

|𝑉2𝐾|
=

𝑙1 sin𝜃2

𝑙2 sin𝜃1
, as desired. ∎ 14 

Figure A1. (a) Schematic of the branching geometry (b) Illustration of degenerate cases 15 

where the branching junction coincides with one of the vertices. 16 



 17 

Lemma 2: The length asymmetry ratio (𝜆𝑙 =
𝑙1

𝑙2
) can be calculated purely in terms of the 18 

lengths of the sides of 𝑣1 and 𝑣2 along with the angle 𝑉1𝑉0𝑉2
̂  and the branching 19 

angles 𝜃1 and 𝜃2 as  20 

𝜆𝑙 =
𝑣2

𝑣1

sin 𝜃1

sin 𝜃2
(− cos 𝑉1𝑉0𝑉2

̂ + sin𝑉1𝑉0𝑉2
̂ cot(𝑉1𝑉0𝑉2

̂ + 𝛾 − 𝜃2)) 21 

where 𝛾 = cot−1 [

𝑣2
𝑣1

sin 𝜃1
sin 𝜃2

+cos(𝜃1+𝜃2−𝑉1𝑉0𝑉2̂ )

sin(𝜃1+𝜃2−𝑉1𝑉0𝑉2̂ )
] 22 

Proof: By Lemma 1, we have 23 

𝜆𝑙 =
𝑙1
𝑙2

=
𝑣2

𝑣1

sin 𝜃1

sin 𝜃2

sin𝜑1

sin𝜑2
 24 

Then, by applying law of sines in a specific, successive order and also using sine 25 

addition formulas, we express 
sin𝜑1

sin𝜑2
  in terms of known quantities and branching angles: 26 

sin𝜑1

sin𝜑2
= (−cos 𝑉1𝑉0𝑉2

̂ + sin𝑉1𝑉0𝑉2
̂ cot(𝑉1𝑉0𝑉2

̂ + 𝛾 − 𝜃2)) 27 

proving the lemma. ∎ 28 



With Lemma 2, we show that the branching angle solution—obtained by optimizing 29 

certain structural principles—also predicts the optimal value for the asymmetric length 30 

ratio.  31 

Appendix B. Coordinate-Free Framework for Material Cost Optimization Solutions 32 

In this section, we introduce a coordinate-free framework for the minimization of the 33 

objective function, defined as 𝐻 = ∑ ℎ𝑖𝑙𝑖𝑖 . We have not seen this approach in the 34 

literature, and other references have used methods that rely on specific choices of 35 

coordinate systems and complicated algebra (1-3). The solution is obtained via finding 36 

the stationary and singular points of the cost function 𝐻 with respect to 𝑙0 (the parent 37 

vessel length) and 𝜑1 (the angle of the parent vessel relative to its unshared 38 

endpoint 𝑉0) (Fig A1). Below, we provide two lemmas that will be used to determine 
𝜕𝐻

𝜕𝑙0
 39 

and 
𝜕𝐻

𝜕𝜑1
. 40 

Lemma 3. Given fixed endpoints 𝑉0, 𝑉1, and 𝑉2, the length |𝑉0𝑉1| and the angle 𝜑1 are 41 

fixed in the triangle 𝑉0𝐽𝑉1, (Fig A2), the derivative of a daughter vessel length with 42 

respect to the parent vessel length is 43 

𝜕𝑙1
𝜕𝑙0

= cos 𝜃2 44 

Proof: Draw a perpendicular line passing through 𝑉1 and intersecting with the extension 45 

of 𝑉0𝐽 at 𝑂. Denote |𝑉0𝑉1| = 𝑣2, |𝑉1𝑂| = 𝑦, and |𝐽𝑂| = 𝑥.  When J is on the right side of 46 

V0, we have 𝑣2 cos𝜑 = 𝑥 + 𝑙0. Since 𝑣2 cos𝜑1 is fixed because 𝑣2 and 𝜑1 are fixed, it 47 

follows that  𝜕(𝑣2 cos 𝜑) = 𝜕(𝑥 + 𝑙0) = 0, or equivalently 48 



𝜕𝑥

𝜕𝑙0
= −1. (A1)  

Notice however that the derivative 
𝜕𝑥

𝜕𝑙0
 is discontinuous when the branching junction 49 

collapses on the parent endpoint (i.e., 𝑙0 = 0) as the right and left derivatives of 𝑥 with 50 

respect to 𝑙0 are opposite in sign: 𝜕+𝑥(0) =
𝜕(𝑣2 cos𝜑1−𝑙0 )

𝜕𝑙0
= −1, 𝜕−𝑥(0) =

𝜕(𝑣2 cos𝜑1+𝑙0)

𝜕𝑙0
=51 

1 (Fig A2). 52 

Figure A2. (a) The branching geometry of a parent and one of the daughter vessels (b) 53 

When the vertex 𝐽 approaches the vertex 𝑉0 from the right, 𝑥 = 𝑣2 𝑐𝑜𝑠 𝜑1 − 𝑙0. (c) When 54 

the vertex 𝐽 approaches the vertex V0 from the right, 𝑥 = 𝑣2 𝑐𝑜𝑠 𝜑1 + 𝑙0. 55 

 56 

Applying the Pythagorean Theorem to the triangle 𝑉1𝐽𝑂, we have 𝑙1 = √𝑥2 + 𝑦2, hence  57 

𝜕𝑙1
𝜕𝑥

=
𝑥

√𝑥2 + 𝑦2
=

𝑥

𝑙1
 (A2)  

Using the chain rule along with equations (A1) and (A2) gives 58 

𝜕𝑙1
𝜕𝑙0

=
𝜕𝑙1
𝜕𝑥

𝜕𝑥

𝜕𝑙0
= −

𝜕𝑙1
𝜕𝑥

= −
𝑥

𝑙1
= −cos(𝜋 − 𝜃2) = cos 𝜃2 59 

as desired. 60 

Lemma 4. Given fixed lengths |𝑉0𝑉1| = 𝑣2 and 𝑙0 in the triangle 𝑉0𝐽𝑉1, then 61 



𝜕𝑙1
𝜕𝜑1

= −𝑙0 sin 𝜃2 62 

Proof: As in Lemma 1, we have cos 𝜃2 = −cos(𝜋 − 𝜃2) = −
𝑥

𝑙1
  and  𝑙1 = √𝑥2 + 𝑦2. From 63 

the triangle 𝑉0𝑉1𝑂, we further have 𝑦 = 𝑣2 sin𝜑1 and 𝑥 = 𝑣2 cos𝜑1 − 𝑙0. Substituting 64 

these into the expression for 𝑙1 yields 𝑙1 = √(𝑣2 cos𝜑1 − 𝑙0)2 + (𝑣2 sin𝜑1)2. As 𝑣2 and 𝑙0 65 

are fixed, differentiating 𝑙1 with respect to 𝜑1 gives: 66 

𝜕𝑙1
𝜕𝜑1

=
1

2

2(𝑣2 cos𝜑1 − 𝑙0)(−𝑣2 sin𝜑1) + 2𝑣2
2 sin𝜑1 cos 𝜑1

√(𝑣2 cos𝜑1 − 𝑙0)2 + (𝑣2 sin𝜑1)2
 67 

This expression simplifies by cancelling the 2𝑣2
2 sin𝜑1 cos𝜑1 terms in the numerator and 68 

by recognizing the denominator is equal to 𝑙1. Therefore, we obtain  
𝜕𝑙1

𝜕𝜑1
=

𝑙0𝑣2

𝑙1
sin 𝜑1. 69 

Since sin𝜑1 =
𝑦

𝑣2
 and sin(𝜋 − 𝜃2) =

𝑦

𝑙1
, this equation becomes 70 

𝜕𝑙1
𝜕𝜑1

=
𝑙0𝑣2

𝑙1
sin𝜑 = 𝑙0

𝑦

𝑙1
= −𝑙0 sin 𝜃2 ∎ 71 

With these two lemmas proven, we now return to the original optimization problem. 72 

Unless J coincides with the unshared endpoints 𝑉0, 𝑉1 or 𝑉2, substituting Lemma 1 and 73 

Lemma 2 into the equality, we have 74 

∇𝐻 = (
𝜕𝐻

𝜕𝑙0
,
𝜕𝐻

𝜕𝜑1
) = 0,⃗⃗   75 

leads to two equations 76 

ℎ0 = −ℎ1 cos 𝜃2 −ℎ2 cos 𝜃1 (A3)  



ℎ1 𝑠𝑖𝑛 𝜃2 = ℎ2 𝑠𝑖𝑛 𝜃1 (A4)  

Solving these equations yields the previously reported branching angle solutions (Eq. 77 

(1) in our paper and from Zamir et. al. (1, 2)). 78 

 Dividing both sides of the equations (A3) and (A4) by ℎ2 and combining them, we 79 

have 80 

ℎ0

ℎ2
= −

sin 𝜃1𝑐𝑜𝑠𝜃2 + sin 𝜃2𝑐𝑜𝑠𝜃1

sin 𝜃2
=

−sin(𝜃1 + 𝜃2)

sin 𝜃2
 81 

Realizing that 𝜃1 + 𝜃2 = 2𝜋 − 𝜃0, or equivalently −sin(𝜃1 + 𝜃2) = sin 𝜃0, and combining 82 

the above equations (A3) and (A4) yields ℎ0 𝑠𝑖𝑛 𝜃2 = ℎ2 𝑠𝑖𝑛 𝜃0. Thus, in order for the 83 

equations that follow from ∇𝐻 = 0⃗  to be soluble, the expressions sin 𝜃0 , 𝑠𝑖𝑛 𝜃1 , and sin 𝜃2 84 

must all have the same sign because the length scales hi are all positive. This sign 85 

criterion can only be satisfied when the branching junction is inside of the triangle 86 

defined by  𝑉0, 𝑉1 and 𝑉2. Consequently, this implies ∇𝐻 = 0⃗  cannot be satisfied when the 87 

branching junction is outside of the triangle or on the boundary of the triangle. 88 

Therefore, in order for the previously reported formula for the branching-angle solutions 89 

to be valid, we need to check first if −1 ≤ cos 𝜃𝑖 ≤ 1, and if it does not, we must 90 

conclude that ∇𝐻 = 0⃗  does not have a solution. Previous studies were not explicit about 91 

this criterion or distinction in finding solutions. Solving the inequalities −1 ≤ cos 𝜃𝑖 ≤ 1 92 

for each branching angle yields necessary conditions for the existence of solutions 93 

of ∇𝐻 = 0⃗ . These conditions reduce to the simple statement, ℎ𝑖 < ℎ𝑗 + ℎ𝑘, about the 94 

weightings of the terms in the cost function for any combination of (𝑖, 𝑗, 𝑘). If any of these 95 



three conditions fail, then the branching junction will be degenerate, meaning that the 96 

optimal branching junction, J, will collapse to one of the vertices.  97 

Moreover, the angles of the triangle 𝑉0𝑉1𝑉2 further confine the range of branching 98 

angles that can be realized within the triangle, i.e. 𝑉𝑗𝑉𝑖𝑉�̂� < 𝜃𝑖. Hence, if branching angle 99 

solutions defined by Eq. (1) violate any of these conditions, the optimization solution will 100 

be a collapse of the branching junction onto one of the unshared endpoints. 101 

Appendix C. Degeneracy Solutions of Material Cost Optimization 102 

We now derive which particular vertex the branching junction will collapse onto for the 103 

degeneracy cases. 104 

Lemma 5. When the triangle conditions and inequalities do not hold (i.e., ℎ𝑖 ≥ ℎ𝑗 + ℎ𝑘), 105 

the vertex 𝑉𝑖 associated with the largest cost parameter (i.e., ℎ𝑖) is the solution for the 106 

material cost optimization. 107 

Proof: By symmetry and without loss of generality, we assume that the cost per parent 108 

length is greater than the sum of the costs per length for the daughter vessels, i.e. ℎ0 ≥109 

ℎ1 + ℎ2. To identify the vertex that yields the minimum cost, we will calculate the total 110 

cost corresponding to all three degenerate cases (Fig A1). Total costs at the 111 

corresponding vertices are given by 𝐻𝑉0
= ℎ1𝑣2 + ℎ2𝑣1, 𝐻𝑉1

= ℎ0𝑣2 + ℎ2𝑣0, and 𝐻𝑉2
=112 

ℎ0𝑣1 + ℎ1𝑣0, where 𝑣0, 𝑣1, and 𝑣2 are lengths of sides 𝑉1𝑉2, 𝑉0𝑉2, 𝑉0𝑉1 respectively. From 113 

our assumption and triangle inequality applied to the sides of the triangle 𝑉0𝑉1𝑉2, we 114 

have 𝐻𝑉1
= ℎ0𝑣2 + ℎ2𝑣0 ≥ (ℎ1 + ℎ2)𝑣2 + ℎ2𝑣0 = ℎ2(𝑣0 + 𝑣2) + ℎ1𝑣2 > ℎ2𝑣1 + ℎ1𝑣2 = 𝐻𝑉0

. 115 

In a symmetric way, one can also prove that 𝐻𝑉2
> 𝐻𝑉1

, implying that J collapses on 𝑉0.  116 



Lemma 6. For any triangle with vertices X, Y, Z, and a point P inside this triangle we 117 

have the following inequality 118 

|𝑋𝑌| + |𝑌𝑍| > |𝑋𝑃| + |𝑃𝑍| 119 

Proof: The set of points Y’ on the plane for which  120 

|𝑋𝑌′| + |𝑌′𝑍| = |𝑋𝑌| + |𝑌𝑍| 121 

forms an ellipse as illustrated in Fig A3. Therefore, for any point 𝑃′ in the interior of the 122 

ellipse  123 

|𝑋𝑃′| + |𝑃′𝑍| < |𝑋𝑌| + |𝑌𝑍| 124 

proving the claim. 125 

Fig A3. Ellipse formed by the points X, Y, and Z. By definition, the sum of the distances 126 

from any point on the ellipse to X and Z is fixed. 127 

 128 

Lemma 7. When optimal branching angle solutions (Eq. (1)) result in a case where the 129 

triangle condition (𝑉𝑗𝑉𝑖𝑉�̂� ≥ 𝜃𝑖) fails, then the vertex associated with 𝜃𝑖  for which the 130 

inequality fails also provides the minimum of 𝐻.   131 



Proof: Without loss of generality, let us assume that the optimal solution of 𝜃0 is less 132 

than the angle 𝑉1𝑉0𝑉2
̂ . As ℎ0

2 = ℎ1
2 + ℎ2

2 − 2ℎ1ℎ2 cos(𝜋 − 𝜃0), we can form a triangle 133 

OAB with side-lengths ℎ0, ℎ1, ℎ2 that has the angle 𝜋 − 𝜃0 at the vertex A (Fig A4). Now, 134 

let us construct a triangle ABC similar to the triangle 𝑉0𝑉1𝑉2. Drawing a line segment AC 135 

of length ℎ2
𝑣1

𝑣2
 , so that the angle 𝐶𝐴�̂� equals 𝑉0̂ ≔ 𝑉2𝑉0𝑉1,̂  yields such a triangle with 136 

similarity ratio 
 ℎ2

𝑣2
. Hence, the side BC has length ℎ2

𝑣0

𝑣2
 (Fig A4). Then, the side inequality 137 

applied to the concave quadrilateral OBCA (Lemma 6) leads to ℎ0+ℎ2
𝑣0

𝑣2
>  ℎ1+ℎ2

𝑣1

𝑣2
. 138 

Multiplying both sides by 𝑣2 provides 𝐻𝑉1
= ℎ0𝑣2 + ℎ2𝑣0 > ℎ2𝑣1 + ℎ1𝑣2 = 𝐻𝑉0

. In a similar 139 

manner, we can show that 𝐻𝑉2
> 𝐻𝑉0

, demonstrating that 𝑉0 gives the optimal position 140 

for J. By symmetry, when 𝜃1 < 𝑉0𝑉1𝑉2
̂  this implies the branching junction J collapses to 141 

𝑉1, and when 𝜃2 < 𝑉1𝑉2𝑉0
̂ , this implies that J collapses to  𝑉2. 142 

Fig A4. The diagram of the proof to show showing that when 𝜃 < 𝑉0̂, the branching 143 

junction J will collapse on 𝑉0. 144 

 145 

Appendix D. Power Cost Optimization for a Single Branching Junction  Solutions 146 



Here, we show that power cost optimization always leads to degenerate branching 147 

geometry. To do this, we first calculate the equivalent impedances when the branching 148 

junction J occurs at the vertex 𝑉𝑖 (Fig A1)—denoted by 𝑍𝑉𝑖
—for each i .  149 

𝑍𝑉0
= (

1

ℎ1𝑣2
+

1

ℎ2𝑣1
)
−1

, 𝑍𝑉1
= ℎ0𝑣2 , 𝑍𝑉2

= ℎ0𝑣1 150 

Now, if we show that  𝑍𝑒𝑞 ≥ min(𝑍𝑉0
, 𝑍𝑉1

, 𝑍𝑉2
), it follows that 𝑍𝑒𝑞 attains its minimum at 151 

one of the vertices. Without loss of generality, we assume that 𝑣1 ≤ 𝑣2, so 𝑍𝑉2
≤ 𝑍𝑉1

 152 

and min(𝑍𝑉0
, 𝑍𝑉1

, 𝑍𝑉2
) = min(𝑍𝑉0

, 𝑍𝑉2
). The following lemmas verify our claim that one of 153 

the vertices is always optimal for the branching junction. 154 

Lemma 8. Let 𝑍𝑉0
< 𝑍𝑉2

. Then, min(𝑍𝑒𝑞) = 𝑍𝑉0
 155 

Proof: To prove the lemma, we need to show that 𝑍𝑒𝑞 ≥ 𝑍𝑉0
 for all possible locations of 156 

the branching junction, J. Because 𝑍𝑉0
< 𝑍𝑉2

, we have ℎ0 >
1

𝑣1
(

1

ℎ1𝑣2
+

1

ℎ2𝑣1
)
−1

, so we can 157 

form the following inequality by replacing ℎ0 by (
1

ℎ1𝑣2
+

1

ℎ2𝑣1
)
−1 1

𝑣1
 158 

𝑍𝑒𝑞 = ℎ0𝑙0 + (
1

ℎ1𝑙1
+

1

ℎ2𝑙2
)
−1

> (
1

ℎ1𝑣2
+

1

ℎ2𝑣1
)
−1 𝑙0

𝑣1
+ (

1

ℎ1𝑙1
+

1

ℎ2𝑙2
)
−1

 159 

To prove 𝑍𝑒𝑞 ≥ 𝑍𝑉0
= (

1

ℎ1𝑣2
+

1

ℎ2𝑣1
)
−1

, it suffices to prove  160 

(
1

ℎ1𝑣2
+

1

ℎ2𝑣1
)
−1 𝑙0

𝑣1
+ (

1

ℎ1𝑙1
+

1

ℎ2𝑙2
)
−1

≥ (
1

ℎ1𝑣2
+

1

ℎ2𝑣1
)
−1

 161 

Rearranging terms, the proof of the Lemma boils down to proving the inequality 162 



(
1

ℎ1𝑙1
+

1

ℎ2𝑙2
)
−1

> (1 −
𝑙0
𝑣1

) (
1

ℎ1𝑣2
+

1

ℎ2𝑣1
)
−1

, (A5)  

Taking the reciprocal of both sides of (A5) and factoring out the terms with 
1

ℎ1
 and 

1

ℎ2
, this 163 

inequality is equivalent to  164 

 
1

ℎ1
(
1

𝑙1
−

1

𝑣2
(1 −

𝑙0
𝑣1

)
−1

) +
1

ℎ2
(
1

𝑙2
−

1

𝑣1
(1 −

𝑙0
𝑣1

)
−1

) < 0 165 

Hence, if we show that both of the terms in the above expression are negative, then 166 

their sum would also be negative, and the proof will be complete. In other words, it 167 

suffices to show two inequalities 168 

1

𝑙1
−

1

𝑣2
(1 −

𝑙0
𝑣1

)
−1

< 0  (A6)  

1

𝑙2
−

1

𝑣1
(1 −

𝑙0
𝑣1

)
−1

< 0  (A7)  

Observe that the triangle inequality applied to the triangle 𝑉0J𝑉1 gives 𝑙0 + 𝑙1 > 𝑣2, hence 169 

𝑙1

𝑣2
> 1 −

𝑙0

𝑣2
> 1 −

𝑙0

𝑣1
, proving (A6). Moreover, the triangle inequality applied to the triangle 170 

𝑉0J𝑉2 yields 𝑙0 + 𝑙2 > 𝑣1, implying that 
𝑙2

𝑣1
> 1 −

𝑙0

𝑣1
, which proves (A7). ∎ 171 

The next lemma takes care of the complementary case. 172 

Lemma 9: Let 𝑍𝑉0
> 𝑍𝑉2

, then min𝑍𝑒𝑞 = 𝑍𝑉2
 173 

Proof: Following the same idea as in the proof of Lemma 8, we want to show that 𝑍𝑒𝑞 ≥174 

𝑍𝑉2
, or equivalently  175 



(
1

ℎ1𝑙1
+

1

ℎ2𝑙2
)
−1

> ℎ0(𝑣1 − 𝑙0) 176 

By the inequality (A5), we proved in Lemma 1, we have  177 

(
1

ℎ1𝑙1
+

1

ℎ2𝑙2
)
−1

> (1 −
𝑙0
𝑣1

) (
1

ℎ1𝑐
+

1

ℎ2𝑣1
)
−1

 178 

The assumption (
1

ℎ1𝑣2
+

1

ℎ2𝑣1
)
−1

> ℎ0𝑣1 further yields that  179 

(
1

ℎ1𝑙1
+

1

ℎ2𝑙2
)
−1

> (1 −
𝑙0
𝑣1

) ℎ0𝑣1 = ℎ0(𝑣1 − 𝑙0) 180 

as desired. ∎ 181 

With Lemmas 8 and 9, we proved that the branching junction collapses onto one of the 182 

vertices for any choice of cost parameters ℎ0, ℎ1, and ℎ2 . 183 

Appendix E. Enlarged Consideration of the Power Cost Optimization to Go 184 

Beyond a Single Branching  185 

In this section, we add terms 𝑐1 and 𝑐2 to the calculation of �̃�𝑒𝑞 to respectively represent 186 

the impedance of all of the vessels are downstream from each daughter vessel at that 187 

branching junction. Furthermore, we consider the special case that impedance 188 

matching—the impedance of the parent vessel is matched by the equivalent 189 

impedances of the daughter vessels—is satisfied throughout the whole network. By 190 

requiring that siblings have identical impedances and that each sibling has the same 191 

number of downstream vessels, we show that the ratio 
𝑐𝑖

𝑍𝑖
 is larger for vessels that are 192 

near to the first branching level (i.e., the heart). To simplify the calculations, we 193 



enumerate the levels such that the level number increases from capillary (level 0) to the 194 

heart (level N). This is the reverse of the labeling used in most models. 195 

By applying impedance matching successively from level 0 to level k, we first 196 

recognize that the impedance of the vessel at the 𝑘th level is given by 𝑍0/2
𝑘, where 197 

𝑍0 denotes the impedance of the capillary. Moreover, for the first few levels above the 198 

capillary level (when 𝑘 = 0, 1, 2), we find that the downstream impedance at level k 199 

follows the form 
𝑘𝑍

2𝑘
  (Fig A5). The next Lemma generalizes this formula for all levels k. 200 

Lemma 10. The downstream impedance from a daughter vessel at level k is given by 201 

𝑐𝑘 =
𝑘𝑍0

2𝑘
 202 

Proof: We prove this claim by induction. Note that a vessel at level 𝑘 − 1 is in series 203 

with the downstream vessels as illustrated in the Fig A5. If the downstream impedance 204 

at level (𝑘 − 1) is equal to 
(𝑘−1)𝑍

2𝑘−1 , then by rules of fluid mechanics, the downstream 205 

impedance at level k is given by   206 

𝑐𝑘 =
1

1
𝑍0

2𝑘−1 +
(𝑘 − 1)𝑍0

2𝑘−1

+
1

𝑍0

2𝑘−1 +
(𝑘 − 1)𝑍0

2𝑘−1

=
𝑘𝑍0

2𝑘
. ∎ 207 

Hence, by Lemma 9, we have that the value of 𝑐𝑘/𝑍𝑘 at level 𝑘 is equal to 208 

𝑘𝑍0

2𝑘

𝑍0

2𝑘

= 𝑘 209 



so that the value of this ratio increases with the level (i.e., increase from the capillaries 210 

to the heart). Therefore, near the heart, the constants (𝑐𝑖) representing the downstream 211 

impedances in the optimization scheme are relatively large compared to the 212 

impedances (𝑍𝑖) of the daughter vessels at that branching junction. 213 

Figure A5. (a) Perfectly-balanced branching network with identical daughter 214 

impedances and (b) inclusion of impedances for downstream vessels in entire 215 

branching network and thus beyond just the branching level k. 216 

 217 
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