Appendix A. Derivation of Length Asymmetry Ratio $\left(\lambda_{l}\right)$ Given Branching Angles, Here, we relate the length asymmetry ratio $\left(\lambda_{l}\right)$ to the optimal branching solutions $\left(\theta_{i}\right)$ and the geometry of the unshared endpoints (i.e., the vertices V_{i}). We denote the lengths of the sides of the triangle that correspond to $V_{1} V_{2}, V_{0} V_{2}$, and $V_{0} V_{1}$ as v_{0}, v_{1}, and v_{2}, respectively (Fig A1). We first prove two Lemmas that lead to the derivation of the asymmetric length ratio.

Lemma 1: Let the intersection of the line between the points V_{0} and J with the line $V_{1} V_{2}$ be called K and the angle defined by the three points $V_{0} K V_{1}$ be called ψ (Fig A1). Using these definitions and the other labeling in Fig. A1, the following relationships holds

$$
\frac{\left|V_{1} K\right|}{\left|V_{2} K\right|}=\frac{l_{1} \sin \theta_{2}}{l_{2} \sin \theta_{1}}=\frac{v_{2} \sin \varphi_{1}}{v_{1} \sin \varphi_{2}}
$$

Proof: By the law of sines applied to the triangles $V_{0} V_{1} K$ and $V_{0} V_{2} K$, we have:

$$
\frac{\sin \psi}{v_{2}}=\frac{\sin \varphi_{1}}{\left|V_{1} K\right|}, \quad \frac{\sin (\pi-\psi)}{v_{1}}=\frac{\sin \varphi_{2}}{\left|V_{2} K\right|}
$$

Since $\sin (\pi-\psi)=\sin \psi$, dividing these equations yields $\frac{\left|V_{1} K\right|}{\left|V_{2} K\right|}=\frac{v_{2} \sin \varphi_{1}}{v_{1} \sin \varphi_{2}}$. Applying a similar approach to triangles $J V_{1} K$ and $J V_{2} K$, we have $\frac{\left|V_{1} K\right|}{\left|V_{2} K\right|}=\frac{l_{1} \sin \theta_{2}}{l_{2} \sin \theta_{1}}$, as desired.

Figure A1. (a) Schematic of the branching geometry (b) Illustration of degenerate cases where the branching junction coincides with one of the vertices.

Lemma 2: The length asymmetry ratio $\left(\lambda_{l}=\frac{l_{1}}{l_{2}}\right)$ can be calculated purely in terms of the lengths of the sides of v_{1} and v_{2} along with the angle $\widehat{V}_{1} V_{0} V_{2}$ and the branching angles θ_{1} and θ_{2} as

$$
\lambda_{l}=\frac{v_{2}}{v_{1}} \frac{\sin \theta_{1}}{\sin \theta_{2}}\left(-\cos \widehat{V}_{1} V_{0} V_{2}+\sin \widehat{V}_{1} \widehat{V}_{0} \cot \left(\widehat{V 1}_{1} V_{0}+\gamma-\theta_{2}\right)\right)
$$

where $\gamma=\cot ^{-1}\left[\frac{\frac{v_{2} \sin \theta_{1}}{v_{1} \sin \theta_{2}}+\cos \left(\theta_{1}+\theta_{2}-V_{1} \overline{V_{0} V_{2}}\right)}{\sin \left(\theta_{1}+\theta_{2}-V_{1} \widehat{V}_{0} V_{2}\right)}\right]$

Proof: By Lemma 1, we have

$$
\lambda_{l}=\frac{l_{1}}{l_{2}}=\frac{v_{2}}{v_{1}} \frac{\sin \theta_{1}}{\sin \theta_{2}} \frac{\sin \varphi_{1}}{\sin \varphi_{2}}
$$

Then, by applying law of sines in a specific, successive order and also using sine addition formulas, we express $\frac{\sin \varphi_{1}}{\sin \varphi_{2}}$ in terms of known quantities and branching angles:

$$
\frac{\sin \varphi_{1}}{\sin \varphi_{2}}=\left(-\cos \sqrt{1} \sqrt{V_{0} V_{2}}+\sin \sqrt{1} \widehat{V}_{0} V_{2} \cot \left(\sqrt{1}{\overline{V_{0}}}_{2}+\gamma-\theta_{2}\right)\right)
$$

With Lemma 2, we show that the branching angle solution—obtained by optimizing certain structural principles-also predicts the optimal value for the asymmetric length ratio.

Appendix B. Coordinate-Free Framework for Material Cost Optimization Solutions

In this section, we introduce a coordinate-free framework for the minimization of the objective function, defined as $H=\sum_{i} h_{i} l_{i}$. We have not seen this approach in the literature, and other references have used methods that rely on specific choices of coordinate systems and complicated algebra (1-3). The solution is obtained via finding the stationary and singular points of the cost function H with respect to l_{0} (the parent vessel length) and φ_{1} (the angle of the parent vessel relative to its unshared endpoint V_{0}) (Fig A1). Below, we provide two lemmas that will be used to determine $\frac{\partial H}{\partial l_{0}}$ and $\frac{\partial H}{\partial \varphi_{1}}$.

Lemma 3. Given fixed endpoints V_{0}, V_{1}, and V_{2}, the length $\left|V_{0} V_{1}\right|$ and the angle φ_{1} are fixed in the triangle $V_{0} J_{1}$, (Fig A2), the derivative of a daughter vessel length with respect to the parent vessel length is

$$
\frac{\partial l_{1}}{\partial l_{0}}=\cos \theta_{2}
$$

Proof: Draw a perpendicular line passing through V_{1} and intersecting with the extension of $V_{0} J$ at O. Denote $\left|V_{0} V_{1}\right|=v_{2},\left|V_{1} O\right|=y$, and $|J O|=x$. When J is on the right side of V_{0}, we have $v_{2} \cos \varphi=x+l_{0}$. Since $v_{2} \cos \varphi_{1}$ is fixed because v_{2} and φ_{1} are fixed, it follows that $\partial\left(v_{2} \cos \varphi\right)=\partial\left(x+l_{0}\right)=0$, or equivalently

$$
\begin{equation*}
\frac{\partial x}{\partial l_{0}}=-1 . \tag{A1}
\end{equation*}
$$

49

Notice however that the derivative $\frac{\partial x}{\partial l_{0}}$ is discontinuous when the branching junction collapses on the parent endpoint (i.e., $l_{0}=0$) as the right and left derivatives of x with respect to l_{0} are opposite in sign: $\partial_{+} x(0)=\frac{\partial\left(v_{2} \cos \varphi_{1}-l_{0}\right)}{\partial l_{0}}=-1, \partial_{-} x(0)=\frac{\partial\left(v_{2} \cos \varphi_{1}+l_{0}\right)}{\partial l_{0}}=$ 1 (Fig A2).

Figure A2. (a) The branching geometry of a parent and one of the daughter vessels (b) When the vertex J approaches the vertex V_{0} from the right, $x=v_{2} \cos \varphi_{1}-l_{0}$. (c) When the vertex J approaches the vertex V_{0} from the right, $x=v_{2} \cos \varphi_{1}+l_{0}$.

Applying the Pythagorean Theorem to the triangle $V_{1} J O$, we have $l_{1}=\sqrt{x^{2}+y^{2}}$, hence

$$
\begin{equation*}
\frac{\partial l_{1}}{\partial x}=\frac{x}{\sqrt{x^{2}+y^{2}}}=\frac{x}{l_{1}} \tag{A2}
\end{equation*}
$$

Using the chain rule along with equations (A1) and (A2) gives
as desired.

Lemma 4. Given fixed lengths $\left|V_{0} V_{1}\right|=v_{2}$ and l_{0} in the triangle $V_{0} J V_{1}$, then

$$
\frac{\partial l_{1}}{\partial \varphi_{1}}=-l_{0} \sin \theta_{2}
$$

Proof: As in Lemma 1, we have $\cos \theta_{2}=-\cos \left(\pi-\theta_{2}\right)=-\frac{x}{l_{1}}$ and $l_{1}=\sqrt{x^{2}+y^{2}}$. From the triangle $V_{0} V_{1} O$, we further have $y=v_{2} \sin \varphi_{1}$ and $x=v_{2} \cos \varphi_{1}-l_{0}$. Substituting these into the expression for l_{1} yields $l_{1}=\sqrt{\left(v_{2} \cos \varphi_{1}-l_{0}\right)^{2}+\left(v_{2} \sin \varphi_{1}\right)^{2}}$. As v_{2} and l_{0} are fixed, differentiating l_{1} with respect to φ_{1} gives:

$$
\frac{\partial l_{1}}{\partial \varphi_{1}}=\frac{1}{2} \frac{2\left(v_{2} \cos \varphi_{1}-l_{0}\right)\left(-v_{2} \sin \varphi_{1}\right)+2 v_{2}^{2} \sin \varphi_{1} \cos \varphi_{1}}{\sqrt{\left(v_{2} \cos \varphi_{1}-l_{0}\right)^{2}+\left(v_{2} \sin \varphi_{1}\right)^{2}}}
$$

This expression simplifies by cancelling the $2 v_{2}^{2} \sin \varphi_{1} \cos \varphi_{1}$ terms in the numerator and by recognizing the denominator is equal to l_{1}. Therefore, we obtain $\frac{\partial l_{1}}{\partial \varphi_{1}}=\frac{l_{0} v_{2}}{l_{1}} \sin \varphi_{1}$. Since $\sin \varphi_{1}=\frac{y}{v_{2}}$ and $\sin \left(\pi-\theta_{2}\right)=\frac{y}{l_{1}}$, this equation becomes

$$
\frac{\partial l_{1}}{\partial \varphi_{1}}=\frac{l_{0} v_{2}}{l_{1}} \sin \varphi=l_{0} \frac{y}{l_{1}}=-l_{0} \sin \theta_{2}
$$

With these two lemmas proven, we now return to the original optimization problem. Unless J coincides with the unshared endpoints V_{0}, V_{1} or V_{2}, substituting Lemma 1 and Lemma 2 into the equality, we have

$$
\nabla H=\left(\frac{\partial H}{\partial l_{0}}, \frac{\partial H}{\partial \varphi_{1}}\right)=\overrightarrow{0}
$$

leads to two equations

$$
\begin{equation*}
h_{0}=-h_{1} \cos \theta_{2}-h_{2} \cos \theta_{1} \tag{A3}
\end{equation*}
$$

$$
\begin{equation*}
h_{1} \sin \theta_{2}=h_{2} \sin \theta_{1} \tag{A4}
\end{equation*}
$$

Solving these equations yields the previously reported branching angle solutions (Eq. (1) in our paper and from Zamir et. al. (1, 2)).

Dividing both sides of the equations (A3) and (A4) by h_{2} and combining them, we have

$$
\frac{h_{0}}{h_{2}}=-\frac{\sin \theta_{1} \cos \theta_{2}+\sin \theta_{2} \cos \theta_{1}}{\sin \theta_{2}}=\frac{-\sin \left(\theta_{1}+\theta_{2}\right)}{\sin \theta_{2}}
$$

Realizing that $\theta_{1}+\theta_{2}=2 \pi-\theta_{0}$, or equivalently $-\sin \left(\theta_{1}+\theta_{2}\right)=\sin \theta_{0}$, and combining the above equations (A3) and (A4) yields $h_{0} \sin \theta_{2}=h_{2} \sin \theta_{0}$. Thus, in order for the equations that follow from $\nabla H=\overrightarrow{0}$ to be soluble, the expressions $\sin \theta_{0}, \sin \theta_{1}$, and $\sin \theta_{2}$ must all have the same sign because the length scales h_{i} are all positive. This sign criterion can only be satisfied when the branching junction is inside of the triangle defined by V_{0}, V_{1} and V_{2}. Consequently, this implies $\nabla H=\overrightarrow{0}$ cannot be satisfied when the branching junction is outside of the triangle or on the boundary of the triangle. Therefore, in order for the previously reported formula for the branching-angle solutions to be valid, we need to check first if $-1 \leq \cos \theta_{i} \leq 1$, and if it does not, we must conclude that $\nabla H=\overrightarrow{0}$ does not have a solution. Previous studies were not explicit about this criterion or distinction in finding solutions. Solving the inequalities $-1 \leq \cos \theta_{i} \leq 1$ for each branching angle yields necessary conditions for the existence of solutions of $\nabla H=\overrightarrow{0}$. These conditions reduce to the simple statement, $h_{i}<h_{j}+h_{k}$, about the weightings of the terms in the cost function for any combination of (i, j, k). If any of these
three conditions fail, then the branching junction will be degenerate, meaning that the optimal branching junction, J, will collapse to one of the vertices.

Moreover, the angles of the triangle $V_{0} V_{1} V_{2}$ further confine the range of branching angles that can be realized within the triangle, i.e. $\overline{V_{J} V_{l}}<\theta_{i}$. Hence, if branching angle solutions defined by Eq. (1) violate any of these conditions, the optimization solution will be a collapse of the branching junction onto one of the unshared endpoints.

Appendix C. Degeneracy Solutions of Material Cost Optimization

We now derive which particular vertex the branching junction will collapse onto for the degeneracy cases.

Lemma 5. When the triangle conditions and inequalities do not hold (i.e., $h_{i} \geq h_{j}+h_{k}$), the vertex V_{i} associated with the largest cost parameter (i.e., h_{i}) is the solution for the material cost optimization.

Proof: By symmetry and without loss of generality, we assume that the cost per parent length is greater than the sum of the costs per length for the daughter vessels, i.e. $h_{0} \geq$ $h_{1}+h_{2}$. To identify the vertex that yields the minimum cost, we will calculate the total cost corresponding to all three degenerate cases (Fig A1). Total costs at the corresponding vertices are given by $H_{V_{0}}=h_{1} v_{2}+h_{2} v_{1}, H_{V_{1}}=h_{0} v_{2}+h_{2} v_{0}$, and $H_{V_{2}}=$ $h_{0} v_{1}+h_{1} v_{0}$, where v_{0}, v_{1}, and v_{2} are lengths of sides $V_{1} V_{2}, V_{0} V_{2}, V_{0} V_{1}$ respectively. From our assumption and triangle inequality applied to the sides of the triangle $V_{0} V_{1} V_{2}$, we have $H_{V_{1}}=h_{0} v_{2}+h_{2} v_{0} \geq\left(h_{1}+h_{2}\right) v_{2}+h_{2} v_{0}=h_{2}\left(v_{0}+v_{2}\right)+h_{1} v_{2}>h_{2} v_{1}+h_{1} v_{2}=H_{V_{0}}$. In a symmetric way, one can also prove that $H_{V_{2}}>H_{V_{1}}$, implying that J collapses on V_{0}.

Lemma 6. For any triangle with vertices X, Y, Z, and a point P inside this triangle we have the following inequality

$$
|X Y|+|Y Z|>|X P|+|P Z|
$$

Proof: The set of points Y^{\prime} on the plane for which

$$
\left|X Y^{\prime}\right|+\left|Y^{\prime} Z\right|=|X Y|+|Y Z|
$$

forms an ellipse as illustrated in Fig A3. Therefore, for any point P^{\prime} in the interior of the ellipse

$$
\left|X P^{\prime}\right|+\left|P^{\prime} Z\right|<|X Y|+|Y Z|
$$

proving the claim.

Fig A3. Ellipse formed by the points X, Y, and Z. By definition, the sum of the distances from any point on the ellipse to X and Z is fixed.

Lemma 7. When optimal branching angle solutions (Eq. (1)) result in a case where the triangle condition $\left(\widehat{V_{J} V_{l} V_{k}} \geq \theta_{i}\right)$ fails, then the vertex associated with θ_{i} for which the inequality fails also provides the minimum of H.

Proof: Without loss of generality, let us assume that the optimal solution of θ_{0} is less than the angle $\widehat{V}_{1} \widehat{V}_{0}$. As $h_{0}{ }^{2}=h_{1}{ }^{2}+h_{2}{ }^{2}-2 h_{1} h_{2} \cos \left(\pi-\theta_{0}\right)$, we can form a triangle OAB with side-lengths h_{0}, h_{1}, h_{2} that has the angle $\pi-\theta_{0}$ at the vertex A (Fig A4). Now, let us construct a triangle ABC similar to the triangle $V_{0} V_{1} V_{2}$. Drawing a line segment AC of length $h_{2} \frac{v_{1}}{v_{2}}$, so that the angle $\widehat{C A B}$ equals $\widehat{V_{0}}:=V_{2}{\widehat{V_{0}} V_{1}}^{1}$, yields such a triangle with similarity ratio $\frac{h_{2}}{v_{2}}$. Hence, the side BC has length $h_{2} \frac{v_{0}}{v_{2}}$ (Fig A4). Then, the side inequality applied to the concave quadrilateral OBCA (Lemma 6) leads to $h_{0}+h_{2} \frac{v_{0}}{v_{2}}>h_{1}+h_{2} \frac{v_{1}}{v_{2}}$. Multiplying both sides by v_{2} provides $H_{V_{1}}=h_{0} v_{2}+h_{2} v_{0}>h_{2} v_{1}+h_{1} v_{2}=H_{V_{0}}$. In a similar manner, we can show that $H_{V_{2}}>H_{V_{0}}$, demonstrating that V_{0} gives the optimal position
 V_{1}, and when $\theta_{2}<\sqrt{V_{1} V_{0}}$, this implies that J collapses to V_{2}.

Fig A4. The diagram of the proof to show showing that when $\theta<\widehat{V}_{0}$, the branching junction J will collapse on V_{0}.

Appendix D. Power Cost Optimization for a Single Branching Junction Solutions

Here, we show that power cost optimization always leads to degenerate branching geometry. To do this, we first calculate the equivalent impedances when the branching junction J occurs at the vertex $V_{i}\left(\right.$ Fig A1)—denoted by $Z_{V_{i}}$-for each i.

$$
Z_{V_{0}}=\left(\frac{1}{h_{1} v_{2}}+\frac{1}{h_{2} v_{1}}\right)^{-1}, \quad Z_{V_{1}}=h_{0} v_{2}, \quad Z_{V_{2}}=h_{0} v_{1}
$$

Now, if we show that $Z_{e q} \geq \min \left(Z_{V_{0}}, Z_{V_{1}}, Z_{V_{2}}\right)$, it follows that $Z_{e q}$ attains its minimum at one of the vertices. Without loss of generality, we assume that $v_{1} \leq v_{2}$, so $Z_{V_{2}} \leq Z_{V_{1}}$ and $\min \left(Z_{V_{0}}, Z_{V_{1}}, Z_{V_{2}}\right)=\min \left(Z_{V_{0}}, Z_{V_{2}}\right)$. The following lemmas verify our claim that one of the vertices is always optimal for the branching junction.

Lemma 8. Let $Z_{V_{0}}<Z_{V_{2}}$. Then, $\min \left(Z_{e q}\right)=Z_{V_{0}}$

Proof: To prove the lemma, we need to show that $Z_{e q} \geq Z_{V_{0}}$ for all possible locations of the branching junction, J. Because $Z_{V_{0}}<Z_{V_{2}}$, we have $h_{0}>\frac{1}{v_{1}}\left(\frac{1}{h_{1} v_{2}}+\frac{1}{h_{2} v_{1}}\right)^{-1}$, so we can form the following inequality by replacing h_{0} by $\left(\frac{1}{h_{1} v_{2}}+\frac{1}{h_{2} v_{1}}\right)^{-1} \frac{1}{v_{1}}$

$$
Z_{e q}=h_{0} l_{0}+\left(\frac{1}{h_{1} l_{1}}+\frac{1}{h_{2} l_{2}}\right)^{-1}>\left(\frac{1}{h_{1} v_{2}}+\frac{1}{h_{2} v_{1}}\right)^{-1} \frac{l_{0}}{v_{1}}+\left(\frac{1}{h_{1} l_{1}}+\frac{1}{h_{2} l_{2}}\right)^{-1}
$$

To prove $Z_{e q} \geq Z_{V_{0}}=\left(\frac{1}{h_{1} v_{2}}+\frac{1}{h_{2} v_{1}}\right)^{-1}$, it suffices to prove

$$
\left(\frac{1}{h_{1} v_{2}}+\frac{1}{h_{2} v_{1}}\right)^{-1} \frac{l_{0}}{v_{1}}+\left(\frac{1}{h_{1} l_{1}}+\frac{1}{h_{2} l_{2}}\right)^{-1} \geq\left(\frac{1}{h_{1} v_{2}}+\frac{1}{h_{2} v_{1}}\right)^{-1}
$$

Rearranging terms, the proof of the Lemma boils down to proving the inequality

$$
\begin{equation*}
\left(\frac{1}{h_{1} l_{1}}+\frac{1}{h_{2} l_{2}}\right)^{-1}>\left(1-\frac{l_{0}}{v_{1}}\right)\left(\frac{1}{h_{1} v_{2}}+\frac{1}{h_{2} v_{1}}\right)^{-1} \tag{A5}
\end{equation*}
$$

Taking the reciprocal of both sides of (A5) and factoring out the terms with $\frac{1}{h_{1}}$ and $\frac{1}{h_{2}}$, this inequality is equivalent to

$$
\frac{1}{h_{1}}\left(\frac{1}{l_{1}}-\frac{1}{v_{2}}\left(1-\frac{l_{0}}{v_{1}}\right)^{-1}\right)+\frac{1}{h_{2}}\left(\frac{1}{l_{2}}-\frac{1}{v_{1}}\left(1-\frac{l_{0}}{v_{1}}\right)^{-1}\right)<0
$$

Hence, if we show that both of the terms in the above expression are negative, then their sum would also be negative, and the proof will be complete. In other words, it suffices to show two inequalities

$$
\begin{align*}
& \frac{1}{l_{1}}-\frac{1}{v_{2}}\left(1-\frac{l_{0}}{v_{1}}\right)^{-1}<0 \tag{A6}\\
& \frac{1}{l_{2}}-\frac{1}{v_{1}}\left(1-\frac{l_{0}}{v_{1}}\right)^{-1}<0 \tag{A7}
\end{align*}
$$

Observe that the triangle inequality applied to the triangle $V_{0} J_{1}$ gives $l_{0}+l_{1}>v_{2}$, hence $\frac{l_{1}}{v_{2}}>1-\frac{l_{0}}{v_{2}}>1-\frac{l_{0}}{v_{1}}$, proving (A6). Moreover, the triangle inequality applied to the triangle $V_{0} J V_{2}$ yields $l_{0}+l_{2}>v_{1}$, implying that $\frac{l_{2}}{v_{1}}>1-\frac{l_{0}}{v_{1}}$, which proves (A7).

The next lemma takes care of the complementary case.

Lemma 9: Let $Z_{V_{0}}>Z_{V_{2}}$, then $\min Z_{e q}=Z_{V_{2}}$

Proof: Following the same idea as in the proof of Lemma 8, we want to show that $Z_{e q} \geq$ $Z_{V_{2}}$, or equivalently

$$
\left(\frac{1}{h_{1} l_{1}}+\frac{1}{h_{2} l_{2}}\right)^{-1}>h_{0}\left(v_{1}-l_{0}\right)
$$

By the inequality (A5), we proved in Lemma 1, we have

$$
\left(\frac{1}{h_{1} l_{1}}+\frac{1}{h_{2} l_{2}}\right)^{-1}>\left(1-\frac{l_{0}}{v_{1}}\right)\left(\frac{1}{h_{1} c}+\frac{1}{h_{2} v_{1}}\right)^{-1}
$$

The assumption $\left(\frac{1}{h_{1} v_{2}}+\frac{1}{h_{2} v_{1}}\right)^{-1}>h_{0} v_{1}$ further yields that

$$
\left(\frac{1}{h_{1} l_{1}}+\frac{1}{h_{2} l_{2}}\right)^{-1}>\left(1-\frac{l_{0}}{v_{1}}\right) h_{0} v_{1}=h_{0}\left(v_{1}-l_{0}\right)
$$

as desired.

With Lemmas 8 and 9, we proved that the branching junction collapses onto one of the vertices for any choice of cost parameters h_{0}, h_{1}, and h_{2}.

Appendix E. Enlarged Consideration of the Power Cost Optimization to Go

Beyond a Single Branching

In this section, we add terms c_{1} and c_{2} to the calculation of $\tilde{Z}_{e q}$ to respectively represent the impedance of all of the vessels are downstream from each daughter vessel at that branching junction. Furthermore, we consider the special case that impedance matching-the impedance of the parent vessel is matched by the equivalent impedances of the daughter vessels-is satisfied throughout the whole network. By requiring that siblings have identical impedances and that each sibling has the same number of downstream vessels, we show that the ratio $\frac{c_{i}}{z_{i}}$ is larger for vessels that are near to the first branching level (i.e., the heart). To simplify the calculations, we
enumerate the levels such that the level number increases from capillary (level 0) to the heart (level N). This is the reverse of the labeling used in most models.

By applying impedance matching successively from level 0 to level k, we first recognize that the impedance of the vessel at the $k^{\text {th }}$ level is given by $Z_{0} / 2^{k}$, where Z_{0} denotes the impedance of the capillary. Moreover, for the first few levels above the capillary level (when $k=0,1,2$), we find that the downstream impedance at level k follows the form $\frac{k Z}{2^{k}}$ (Fig A5). The next Lemma generalizes this formula for all levels k.

Lemma 10. The downstream impedance from a daughter vessel at level k is given by

$$
c_{k}=\frac{k Z_{0}}{2^{k}}
$$

Proof: We prove this claim by induction. Note that a vessel at level $k-1$ is in series with the downstream vessels as illustrated in the Fig A5. If the downstream impedance at level $(k-1)$ is equal to $\frac{(k-1) Z}{2^{k-1}}$, then by rules of fluid mechanics, the downstream impedance at level k is given by

$$
c_{k}=\frac{1}{\frac{1}{\frac{Z_{0}}{2^{k-1}}+\frac{(k-1) Z_{0}}{2^{k-1}}}+\frac{1}{\frac{Z_{0}}{2^{k-1}}+\frac{(k-1) Z_{0}}{2^{k-1}}}}=\frac{k Z_{0}}{2^{k}}
$$

Hence, by Lemma 9, we have that the value of c_{k} / Z_{k} at level k is equal to

$$
\frac{\frac{k Z_{0}}{2^{k}}}{\frac{Z_{0}}{2^{k}}}=k
$$

so that the value of this ratio increases with the level (i.e., increase from the capillaries to the heart). Therefore, near the heart, the constants $\left(c_{i}\right)$ representing the downstream impedances in the optimization scheme are relatively large compared to the impedances $\left(Z_{i}\right)$ of the daughter vessels at that branching junction.

Figure A5. (a) Perfectly-balanced branching network with identical daughter impedances and (b) inclusion of impedances for downstream vessels in entire branching network and thus beyond just the branching level k.

(b)

References

1. Zamir M. Nonsymmetrical bifurcations in arterial branching. The Journal of general physiology. 1978;72(6):837-45.
2. Zamir M. Optimality principles in arterial branching. Journal of Theoretical Biology. 1976;62(1):227-51.
3. Murray CD. The physiological principle of minimum work applied to the angle of branching of arteries. The Journal of general physiology. 1926;9(6):835-41.
