
Introduction to PPI networks 

 

Proteins are the molecular machines of a cell. The whole set of proteins in a cell or a specific 
compartment of a cell is called proteome. Proteins enable the cell to fulfill its enormous 
variety of functions. Proteins build, amongst others, the cytoskeleton, molecular motors, 
receptors, transporters and more. Mostly, proteins do not work on their own, but either 
assemble into complexes with other proteins, or organize themselves in functional modules. 
Protein complexes, e.g., the SNARE complexes, are composed of several subunits and act 
as a unit. Functional modules are sets of proteins, which are involved in the same or similar 
biological processes, e.g., the cell cycle or the endocytosis, but do not necessarily interact at 
the same time and place. The assumption here is, that proteins involved in the same 
processes are more likely to act with each other than with proteins from different processes. 
Complexes and functional modules imply physical interactions between the proteins. Graph 
theoretical methods are applied to analyze these interactions. The results of these analyses 
aid in the understanding of cellular processes and their organization. 

The physical interactions between the proteins are integrated into a network of protein-
protein interactions (PPI). A PPI network is built of nodes and connections, where the nodes 
represent the proteins, and the connections between the nodes represent the possible 
physical interactions between the proteins. A PPI network represents a static model of all 
physical interactions reported for the proteome of interest. It does not integrate quantitative 
data as, e.g., the strength of the interactions, which domains interact, or spatiotemporal 
information. Rather, a PPI network is suited to analyze the organization of proteins or a 
proteome in terms of the functional organization. 

Protein-complexes are represented as distinct graph structures, which are called cliques. A 
clique is a subgraph in which all noded are connected to each other, i.e., the subgraph is 
maximal connected (Fig. 1). This property makes putative molecular complexes detectable 
with algorithmic solutions (Bron and Kerbosch, 1973). 

Detection of functional modules is commonly referred to as community detection. Community 
detection in PPI networks is an active area of research (Fortunato, 2010). Using the topology 
of a PPI network we can find densely connected parts and partition the network into 
meaningful subnetworks. Based on additional information as, e.g., the localization or 
functional annotations of the involved proteins, the subnetworks can be functional classified. 
The classification of a subnetwork adds another layer of information that is used to reveal the 
functional organization of the entire network. 

A global analysis of network properties gives information about the topological organization 
of the network. One of the most prominent properties of biological networks is scale-
freeness. In a scale-free network a few nodes are highly connected while most of the nodes 
only have a few connections (Barabási and Albert, 1999). In other words, the probability that 
a protein has k connections decreases with high k. The distribution of the probabilities for k 
connections is called the node degree distribution. For scale-free networks, this distribution 
follows a power-law and appears linear in a log-log plot. The concept of scale-freeness, 
therefore, is used to distinguish biological networks from random networks, which follow a 
Poisson distribution. The highly connected nodes are referred to as hubs and, based on their 
high connectivity, play an important role in a PPI network. The hub proteins have been 
shown to be essential for the organism in eukaryotic organisms (Jeong et al., 2001). 

Identification of hub proteins is facilitated by the application of centrality analysis. Centralities 
are numerical values that are assigned to individual proteins in the network. Based on the 
centralities, the nodes are ranked and the most important ones are identified. In the case of 



hub identification, the numerical values used as centralities are simply the number of 
interactions (Fig. 2 (A)). For example, APP has 71 connections in the PPI network of the PAZ 
and, therefore, is classified as a hub in the PPI network of the PAZ. Another centrality 
measure is the shortest path betweenness centrality. The betweenness centrality measures 
the ability of a protein to monitor communication between other proteins. Therefore, a protein 
with a high betweeness centrality has a linker or bridging function in the network. APP has a 
betweenness of ~0.12. The shortest path betweeness centrality utilizes the shortest paths 
between every node of the network. A protein is considered to be central if it participates in 
numerous shortest paths than other proteins (Fig. 2 (B)). Removing of high betweenness 
proteins from the network has been proposed for an optimal partition of the network (Girvan 
and Newman, 2002). 

The clustering coefficient measures the degree of connectivity in the neighborhood of a 
protein in the network. A protein with a high cluster coefficient is part of a densely connected 
part of the network. In a dense part of a network, if protein A is connected to protein B, and 
protein B is connected to protein C, the probability is high that protein A is also connected to 
protein C (Fig. 2 (C)). The cluster coefficient can also be measured for the entire network and 
indicates the average cluster coefficient of all proteins in the network. 

The combination of different centrality measures enables a deeper understanding of the role 
of a protein in a network. A protein might be important for the structure for a network even if it 
is lowly connected. In this case a high betweenness centrality value might suggest a bridging 
role for the protein. 
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Figure 1: vATPase protein-complexes represented as a clique. A clique is a subgraph in 

which all noded are connected to each other, i.e., the subgraph is maximal connected. 

 

 

 

 

 

 

 

 

 



Figure 2: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Centrality analysis: For hub identification, the numerical values used as centralities 

are simply the number of interactions (A). A protein is considered to be central if it 

participates in numerous shortest paths than other proteins (B). The clustering coefficient 

measures the degree of connectivity in the neighborhood of a protein in the network. A 

protein with a high cluster coefficient is part of a densely connected part of the network (C).  


