
Supplementary Text

1 Introduction

The purpose of this supplement is to give a self-contained, rigorous account of the
topics needed to fully understand the main text. The supplement is organized as
follows. Section 2 contains some remarks on notation. Section 3 covers the basics
of random variables, gives details on how one constructs a well defined random
variable from a power-law distribution, and covers some basic results in random
matrix theory, Wigner’s circle and semi-circle laws. Section 4 contains details on
the definition of asymptotic stability, how this relates to the generalized Lotka-
Volterra dynamics, some resent results on diagonal stability are discussed, and new
results regarding the stochastic stability of Lotka-Volterra dynamics is discussed.
Section 5 gives the details of the multi-dimensional scaling analysis and clustering
algorithms employed in this study. Section 6 gives the details of our modeling
approach. Section 7 contains simulation results that are intended to complement
the figures in the main text and the supplementary figures.

Much of the foundational material is well known in each of their respective areas.
The diagonal stability result for random matrices has never been discussed in the
context of Lotka-Volterra dynamics. The discussions regarding stable steady state
shift for Lotka-Volterra dynamics are the first of their kind as well.

Those familiar with probability theory need only read §3.3 for a refresher on
Wigner random matrices and the rest of §3 can be skipped. Those familiar with
stability need only visit §4.3 and §4.5. That being said, even the seasoned stability
theorist may find new things in the stochastic subsection of §4.4. Section 5 can be
skipped for those familiar with the commonly used tools in clustering analysis.

2 Notation

Throughout we denote the real numbers as R = (−∞,∞), and the complex numbers
as C. A number z ∈ C if z = x+ iy where x, y ∈ R and i ,

√
−1. The positive real

numbers are denoted as R>0 , (0,∞) and the non-negative reals as R≥0 , [0,∞).
The n-dimensional reals are denoted as Rn, Rn>0 denotes the n-dimensional space of
positive vectors which we will refer to as the positive orthant, and R

n
≥0 as the non-

negative orthant. An m×n matrix A of values in the reals is denoted as A ∈ R
m×n.

The element of A in the i-th row and the j-th column will often be denoted with
lower case letters as aij = [A]ij . If there is an issue with formatting and it is not
clear that both elements i and j are subscripts in the previous notation then it is
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equivalent to denote aij as ai,j. The dual notation for an n× n matrix constructed
from elements aij is denoted as A = (aij)1≤i,j≤n.

The superscript (·)T is used to denote transpose. The components of an n
dimensional vector x are defined as follows x = [x1, x2, . . . , xn]

T. We will often
make use of the following nonstandard subscript notation, xj:k to denote the vector
obtained from taking the j-th element to the k-th element of x.1 As an example,
consider y = [1, 3, 5]T, then y2:3 = [3, 5]T. The Euclidean norm of a vector x ∈
R
n is defined as ‖x‖ ,

(
∑n

i=1 x
2
i

)1/2
. When applied to a matrix A ∈ R

m×n the

norm is an induced norm ‖A‖ , sup‖x‖=1‖Ax‖. For a square symmetric matrix

P = PT ∈ R
n×n the inequality < (≤) is used as P < 0 (P ≤ 0) if and only if

xTPx < 0 (xTPx ≤ 0) for all x ∈ R
n.

The notation for union and intersection of sets is ∪ and ∩ respectively. For
a set A ⊂ U the complement of A is defined as Ac = {y ∈ U |y /∈ A}. The set
minus notation is defined as A \B = A ∩Bc. Let A be a set, then |A| denotes the
cardinality of that set. If for instance A = {1, 2, 4}, then |A| = 3.

Given that x will primarily be defined as the state variable, we will use Y when
discussing a generic random variable. The probability distribution for Y is denoted
as µY for which we will generically denote its probability density function as f(y)
where µY =

∫

f(y) dy. When given a probability density function f(y), the notation
Y ∼ f(y) reads as the random variable Y is drawn from the probability density func-
tion f . Also, if we generically denote the standard normal distribution as N (0, 1),
then with a slight abuse of notation we can write Y ∼ N (0, 1) to denote that Y
is drawn from the standard normal distribution. The notation X ≡ Y is used to
denote when two random variables are drawn from the same distribution.

We will also make use of the following asymptotic notation. f(n) = O(g(n))
if there exists a C independent of n such that ‖f(n)‖ ≤ C‖g(n)‖ for n sufficiently
large. Another form of asymptotic notation that will be borrowed is the following,
f(n) = o(g(n)) if there exists a c(n) ≥ 0 where limn→∞ c(n) = 0 and ‖f(n)‖ ≤
c(n)‖g(n)‖.

Results from dynamics and control, to probability and random matrix theory will
be called upon in this work. If the notation of a particular section seems to overlap,
it is assumed that the convention from the field of origin overrides. For instance,
when discussing dynamics a capital letter will denote a matrix, however capital
letters are used in probability theory when denoting generic random variables.

3 Random Variables and Random Matrices

3.1 Primer on Random Variables

We will use the following three distributions in constructing the random interaction
matrices for the microbial communities: the uniform distribution taking values in
the interval [0, 1], the normal (Gaussian) distribution of mean 0 and variance σ2 and
a power-law distribution with minimum value 1 and exponent −α. One can define
a random variable just with a variable space and ignore the underlying sample
space [42, §1.1.2]. We however introduce the full probabilistic machinery into the
discussion. Formality in this section is two fold. First, to give the reader confidence

1This notation was motivated by the index notation used in Matlab.
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that the random variables generated from the power-law distribution are indeed
well defined random variables [5]. Second, the Wigner circle law and semi-circle law
can not be defined without this machinery, and these two laws are fundamental to
understanding stability results that are presented in the next section. The following
is a nearly verbatim presentation of probability spaces following [41,42].

Let Ω be a sample space. When given a measure and a σ-algebra, Ω becomes a
probability space Ω = (Ω,F ,P), where F is a σ-algebra of subsets of Ω and P is a
probability measure. The probability measure along with the sample space satisfy
the following equality P(Ω) = 1. Events E are then taken from the σ-algebra and
will have a probability of occurring, i.e. E ∈ F and E 7→ P(E) where P(E) ∈ [0, 1].
A random variable Y takes values in a measurable space R = (R,R) where R is a
σ-algebra of subsets of R. We will also refer to R as the variable space. The formal
definition of a random variable is a map Y : Ω → R where Y is measurable. When
one asks for the probability that event Y is in S ∈ R, we are interested in the prob-
ability of event E = Y −1(S) occurring. From the definition of our probability space
Ω, this is simply P(Y −1(S)). Note that this is equivalent to P({ω ∈ Ω : Y (ω) ∈ S})
which we can unambiguously denote in shorthand as P(Y ∈ S) [42, §1.1.2]. This
notation makes no reference to the original sample space and thus can be used
without ambiguity when discussing the probability of an event occurring. All of
our probability spaces and variable spaces will be subsets of R or C. Thus we will
implicitly use the Borel σ-algebra. Consequently, the specific σ-algebra of interest
will no longer be denoted.

We now give rigorous definitions for the probability measure µY of a random
variable Y ∈ R = (R,R) and the corresponding probability density function f
associated with µY . The distribution of Y is defined as

µY (S) , P(Y ∈ S).

Given the above definition we define the probability density function as

µY (S) =

∫

S
f(y) dy.

The cumulative distribution function is defined as

FY (y) , P(Y ≤ y) = µY ((−∞, x]).

The expected value of a random variable Y ∼ f(y) (taking values from the proba-
bility density function f) is defined as

EY ,

∫

R
y dY (y)

=

∫

R
yf(y) dy

=

∫

R
P(Y ≥ λ) dλ.

(T1)

Sometimes parentheses are used, i.e. E(Y ), for clarity. The variance of a distribution
is defined as

Var(Y ) , E |Y −E(Y )|2 . (T2)

Definition 1 ([Almost Surely). An event E occurs almost surely if P(E) = 1.
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3.1.1 Distributions of interest

The uniform distribution generates random variables on the measure space R = [0, 1]
with the following probability density function

u(y) =

{

1 if y ∈ [0, 1]

0 otherwise .

A pseudorandom variable in [0, 1] can be generated uniformly using the MATLAB
command random(’unif’,0,1). We will use the shorthand notation U(0, 1) to
denote a uniform distribution taking values in [0, 1].

The normal distribution with mean 0 and standard deviation σ generates random
variables on the measure space R and satisfies the well known probability density
function

n(y) =
1

σ
√
2π
e−

y2

2σ2 .

A pseudorandom variable with mean 0 and variance σ2 can be generated using the
MATLAB command random(’norm’,0,sigma). We will use the shorthand notation
N (0, σ2) to denote a normal distribution with mean 0 and standard deviation σ.
A log-normal distributed random variable is simply one in which Y = eX where
X ∼ N (0, σ2).

The generic power-law used in this work generates random variables on the
measure space [1,∞) with the following probability density function

p(y) = (α− 1)y−α (T3)

where α > 1 [5, Equation (2.2)]. We will use the following short hand notation P(α)
to denote a power-law distribution with exponent −α.

Later we will generate power-law distributions from uniform distributions, and
thus we have the following simple result. Let U be a uniform random variable
from the set [0, 1), then we can generate a random variable P with a power-law
distribution in [1,∞) using the following measurable monotonic function r : [0, 1) →
[1,∞),

r(U) = (1− U)
1

1−α . (T4)

Now, letting P , r(U) we can see that P indeed satisfies all of the requirements
to be a well defined random variable. P is a measurable function defined from a
probability space (the variable space of U with a probability measure P) to an event
space by a measurable function r. This mapping for the generation of a random
variable P with powerlaw distribution is illustrated with the following commutative
diagram.

[0, 1)

r

Ω

U

P
[1,∞)

Random variables satisfying a power-law probability density function can be gener-
ated in MATLAB using the following line (1-random(’unif’,0,1))^(1/(1-alpha)).

The nice trick in (T4) is introduced in the literature without proof, and is simply
denoted as following from the fundamental transformation law of probabilities [35,
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Supplementary Text Figure T1: Illustration of the distributions for the three
types of probability functions used in this work, from left to right: uniform,
normal, and power-law.
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Supplementary Text Figure T2: Illustration of the power-law distribution
from low heterogeneity to high heterogeneity.

§7.3]. Given the rigorous introduction of probability theory at the beginning of this
section, we can however directly derive this result by analyzing the probability that
P > y under the assumption that there exists a monotonically increasing bijection
r : [0, 1) → [1,∞), which yields

∫ ∞

y
p(x)dx = P(P > y)

= P(r(U) > y)

= P(U > r−1(y))

=

∫ ∞

r−1(y)
u(x)dx.

(T5)

The transition from line 2 to line 3 in the above equality follows from the fact that
r is monotonically increasing and thus when the inverse is taken the sign of the
inequality is preserved. Integrating the above equality it follows that

y1−α = 1− r−1(y).

Substituting z = r−1(y) and solving for y in the above equality it follows that

y = (1− z)
1

1−α

which proves the relation in (T4).
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3.2 Random Network Models

Formally a digraph G is defined by the double (V, E) where V = {1, 2, . . . , n} is the
vertex set and the directed edges are defined by the ordered pairs (i, j) ∈ E ⊂ V × V.
An element (i, j) ∈ E if and only if there is a directed edge from vertex i to vertex
j. We are primarily interested in the adjacency matrix A of the digraph which is
defined as

[A]ij =

{

1 if (j, i) ∈ E
0 otherwise

.

When [A]ij = 1 for all i and j the digraph is said to be complete. Note that
we allow for self-loops in our construction. Two other digraph topologies to be
discussed shortly are the Erdős-Rényi (Gilbert) random digraph and the power-law
degree digraph.

3.2.1 Erdős-Rényi (Gilbert) Digraph

An Erdős-Rényi (Gilbert) digraph is a digraph G(n, p) of n nodes, where the prob-
ability of a directed edge from node i to node j is p for any i, j ∈ V. The adjacency
matrix for this model is constructed as follows. Let G ∈ [0, 1]n×n be a matrix with
elements independently sampled from the uniform distribution between 0 and 1,
[G]ij ∼ U(0, 1). Then let A be defined as follows

[A]ij =

{

1 if [G]ij < p

0 otherwise
.

If one is interested in defining an Erdős-Rényi model for a 100 node digraph with
an expected mean in-degree (or out-degree) of 10, then simply set p = 10/100 in
this construction.

While the above model is often credited to Erdős and Rényi [12, 13], it was
actually first presented by Gilbert in [15]. We will follow convention however and
simply refer to this random network model as the Erdős-Rényi (ER) model. The
adjacency matrix for this model can be generated in MATLAB using the following
boolean expression rand(n,n)<p.

3.2.2 Power-law Out-degree Digraph

In this section we outline how one can generate the adjacency matrix for a power-law
out-degree digraph. Let h = [h1, h2, . . . , hn]

T be the column vector of out-degrees
for nodes {1, 2, . . . , n}. If one is interested in having a digraph with a power-law
out-degree of exponent −α with the mean out-degree approximately d, then setting

hi = min

{⌈

d
[h̄]i

mean(h̄)

⌉

, n

}

(T6)

is sufficient, where [h̄]i ∼ P(α), i = 1, 2, . . . , n. Note that ⌈·⌉ is the ceiling operator.
We also note that this will not guarantee that the mean out-degree is d for any finite
sized digraph. Finally the adjacency matrix is constructed by selecting hi random
elements in column i of A and setting them to 1.
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This method of generating power-law degree distributions leaves much to be
desired. It is not based on any known theory for power-law degree graphs [3,28]. So
as to be able to compare Erdős-Rényi digraphs with the above power-law digraphs
we have normalized by degree, which is not a common practice in the literature
either. We note also that few authors have rigorously analyzed power-law digraphs
with the exception of [3, §11] and [2].

3.3 Spectrum of Random Matrices

Two classic results from Wigner [44–46] are now discussed. First we define the
Empirical Spectral Distribution (ESD) of an n×n real valued matrix A as µA : C → N

µA(z) ,
1

n
|{1 ≤ i ≤ n : Reλi(A) ≤ Re z, Imλi(A) ≤ Im z}| .

Recall that when applied to a finite set |·| denotes the cardinality of that set. The
ESD simply counts the number of eigenvalues of A within radius |z| of the origin.
A weaker version of [43, Theorem 1.10] is now stated.

Theorem 1. Let Bn be a real n× n matrix whose elements are independently and
identically distributed random variables with mean 0 and variance 1. Then it follows
that µBn/

√
n converges almost surely to the uniform disk in the complex plane, 1|z|≤1,

with probability 1. Let R denote the variable space for the i.i.d. random variables,
then

P

(

lim sup
n→∞

∣

∣

∣

∣

∫

C

h(z) dµBn/
√
n(z)−

∫

C

h(z)1|z|≤1 dz

∣

∣

∣

∣

≤ ǫ

)

= 1

for all ǫ > 0 and every bounded continuous function h : R→ C.

The semi-circle distribution is defined as µsc(S) ,
∫

S ρsc(y)dy where the probability
density function is defined as

ρsc(y) =

{

1
2π (4− y2)

1/2
+ , |y| ≤ 2

0, |y| > 2

We now state a more conservative version of [40, Theorem 5].

Theorem 2. Let Mn be a symmetric n× n matrix whose diagonal and upper right
elements are independently and identically distributed random variables with mean
0 and variance 1. Then it follows that µMn/

√
n converges in the sense of probability

to µsc. Let R denote the variable space for the i.i.d. random variables, then

lim inf
n→∞

P

(∣

∣

∣

∣

∫ x

−2
h(y) dµBn/

√
n(y)−

∫ x

−2
h(y)dµsc(y)

∣

∣

∣

∣

≤ ǫ

)

= 1

for all ǫ > 0 and every bounded continuous function h : R→ R.

A conservative version of [1, Theorem A] is now stated

Theorem 3. Let Mn be a symmetric n× n matrix whose upper right elements are
independently and identically distributed random variables with mean 0 and variance
σ2, and whose diagonal elements are independently and identically distributed with
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Supplementary Text Figure T3: Eigenvalues for (left) random matrix and
(right) symmetric random matrix of dimension n × n with n = 1000 where ele-
ments are drawn from the distribution N (0, 1)/

√
n.

mean 0 and finite variance. Then it follows that sup1≤i≤n |λi(Mn)| = 2σ
√
n(1+o(1))

asymptotically almost surely. Stated another way,

lim inf
n→∞

P

(

sup
1≤i≤n

|λi(Mn)| = 2σ
√
n(1 + o(1))

)

= 1.

Theorem 1 states that the spectral distribution of a random matrix with elements
drawn from a normal distribution with mean 0 and variance 1/n converges to the
unit disk centered at the origin of the complex plain. For the same random matrix
but with the added assumption of symmetry, the spectrum converges to the line
segment [−2, 2] on the real line, see Figure T3. The spreading of the spectrum from
a diameter of 2 to a diameter of 4 can be explained by the fact that all 2-cycles
in the matrix now have a positive loop game. Positive feedback for 2-cycles always
repels the eigenvalues along the real axis [14].

4 Stability

4.1 Primer on Stability

Consider the time-varying dynamical system defined by

ẋ(t) = f(x(t), t)

x(t0) = x0
(T7)

where x : R → R
n is the state vector, t is time, t0 is the initial time, and ˙( ) , d

dt( ).
Let x∗ ∈ R

n be the equilibrium solution so that f(x∗, t) = 0 for all t. The solution to
the ordinary differential equation in (T7) is a transition function φ(t;x0, t0) such that
φ(t0;x0, t0) = x0 and φ̇(t;x0, t0) = f(φ(t;x0, t0), t). For existence and uniqueness
conditions see [6]. Below we give the various definitions of stability as defined in
[17,23,30,34].

Definition 2 (Stability). Let t0 ≥ 0, the equilibrium x∗ is

(i) Stable, if for all ǫ > 0 there exists a δ(ǫ, t0) > 0 such that ‖x0 − x∗‖ ≤ δ implies
‖φ(t0; t0, x0)− x∗‖ ≤ ǫ for all t ≥ t0.



. SUPPLEMENTARY TEXT 9

(ii) Attracting, if there exists a ρ(t0) > 0 such that for all η > 0 there exists
a T (η, x0, t0) such that ‖x0 − x∗‖ ≤ ρ implies ‖φ(t;x0, t0)− x∗‖ ≤ η for all
t ≥ t0 + T .

(iii) Uniformly Stable, if the δ in (i) is uniform in t0, thus taking the form δ(ǫ).

(iv) Uniformly Attracting, if it is attracting where ρ does not depend on t0 and
T (η, ρ) does not depend on x0 or t0.

(v) Uniformly Asymptotically Stable (UAS), if it is uniformly stable and uniformly
attracting.

(vi) Uniformly Bounded, if for all r > 0 there exists a B(r) such that ‖x0−x∗‖ ≤ r
implies that ‖s(t; t0, x0)− x∗‖ ≤ B for all t ≥ t0.

(vii) Uniformly Attracting in the Large, if for all ρ > 0 and η > 0 there exists a
T (η, ρ) such that ‖x0−x∗‖ ≤ ρ implies ‖s(t;x0, t0)−x∗‖ ≤ η for all t ≥ t0+T .

(viii) Uniformly Asymptotically Stable in the Large (UASL), if it is uniformly stable,
uniformly bounded, and uniformly attracting in the large.

(ix) UAS in the Positive Orthant, if it is uniformly stable, uniformly bounded, and
uniformly attracting in the positive orthant.

The precise definition of UAS is important in the context of dynamical systems.
If one is able to show that a given system is UAS, then it follows that the dynamics
are stable in the presence of bounded disturbances as well. That is, if the dynamics
in (T7) are UAS then for ‖d(t)‖ ≤ γ where γ > 0 is sufficiently small, the dynamics

ẋ(t) = f(x(t)) + d(t)

are uniformly stable. If the dynamics in (T7) are UASL then x(t) is bounded for
all bounded d(t) and γ can be arbitrarily large. A detailed discussion regarding this
fact can be found in [17, Definition 56.1 and Theorem 56.4] and a practical example
in the context of adaptive systems can be found in [33].

For a linear dynamical system ẋ(t) = Ax(t) the uniform asymptotic stability
(which is actually exponential) is verified if all of the eigenvalues of A have real parts
less than zero. A well known theorem regarding the stability of linear systems, due
to Lyapunov, is now stated.

Theorem 4 (Lyapunov). The eigenvalues of a real matrix A have all real parts less
than zero if and only if there exists a P = PT > 0 such that ATP + PA < 0.

A stronger version of Thereom 4 will be needed when discussing the stability of
Lotka-Volterra dynamics.

Definition 3. If there exists a diagonal positive matrix P such that ATP +PA < 0
then A is said to be Diagonally Stable.
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4.2 Stability of Generalized Lotka Volterra Dynamics

Consider dynamics of the form

ẋi(t) = rixi(t) + xi(t)

n
∑

j=1

aijxj(t), i = 1, . . . , n (T8)

where t ∈ [t0,∞) is time with t0 the initial time. The state vector is denoted x ∈ R
n

and defined as x = [x1, x2, . . . , xn]
T. The linear terms are collected in the column

vector r = [r1, x2, . . . , rn]
T and A = (aij)1≥i,j≥n captures the pair-wise interactions

in the generalized Lotka-Volterra dynamics presented in (T8). The dynamics in
(T8) can be compactly represented as

ẋ(t) = diag(x(t))(r +Ax(t)). (T9)

A discussion regarding the invertability of A is in order. This will become im-
portant in determining whether the system in (T8) has a unique non-trivial steady
state. As discussed in the main text, the existence of the Verhulst terms aiix

2
i in-

creases the likelihood that A is full rank. First consider the case where all aij = 0
for all i 6= j, then a necessary and sufficient condition for A to be full rank is that
all diagonal elements are non-zero.

If A is invertible then there exists a unique non-trivial steady state solution of
the dynamics in (T8), denoted as x∗ = −A−1r [16]. We are interested in answering
the following question. Given an ecological system of n species, is it possible to
introduce another species and drive the system to any non-trivial steady state of
our choosing? We will show that the answer is yes, and furthermore, if the original
n-dimensional ecological system satisfies a diagonal stability condition, then we can
design the interaction strengths for the introduced species so that the new n + 1
dimensional ecological system is asymptotically stable for all initial conditions in
the positive orthant. We then discuss equivalent results regarding steady state shift
and stability when an arbitrary number of species is added.

Consider the following set of assumptions.

Assumption 1. A is invertible.

Assumption 2. For the dynamics in (T8) the steady state solution x∗ ∈ R
n
>0.

Assumption 3. The matrix A is diagonally stable, see Definition 3.

Theorem 5 ([16, Theorem 1]). If the system in (T8) satisfies Assumptions 1-3,
then the steady state x∗ is uniformly asymptotically stable for all initial conditions
x0 ∈ R

n
>0.

Proof. Let V (x, t) = 2
∑n

i=1 pi(xi − x∗i − x∗i log(xi/x
∗
i )) be the Lyapunov candidate

where pi is the i-th diagonal element of a diagonal positive matrix P such that
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ATP + PA < 0. Differentiating the Lyapunov candidate it follows that

V̇ (x, t) = 2

n
∑

i=1

pi

(

ẋi − x∗i
ẋi
xi

)

= 2

n
∑

i=1

pi(xi − x∗i )
ẋi
xi

= 2
n
∑

i=1

pi(xi − x∗i )



bi +
n
∑

j=1

aijxj





= 2

n
∑

i=1

pi(xi − x∗i )
n
∑

j=1

aij(xj − x∗j )

= (x− x∗)T(ATP + PA)(x − x∗).

Thus the Lyapunov candidate is positive definite in x − x∗ and its derivative is
negative definite in x− x∗.

Remark 1. Note that in the original work of Goh [16], stability in the positive
orthant is denoted, but in fact what he proved is uniform asymptotic stability in
the positive orthant. It is important to distinguish the two as stability only implies
boundedness of trajectories and uniform asymptotic stability implies convergence to
the equilibrium as well as robustness to bounded persistent disturbances.

4.3 Stability in the presence of new species

4.3.1 Adding one new species

For the following examples we are interested in the m = n+1 dimensional dynamics

ż(t) = diag(z(t))(g + Fz(t)) (T10)

where

g =

[

r
s

]

, and F =

[

A b
cT d

]

,

with A and r are as defined in (T8), and we have introduced the new elements
s, d ∈ R, and b, c ∈ R

n. These dynamics represent the addition of one new species
to the ecological system in (T8).

We now introduce an important property of diagonally stable matrices.

Theorem 6 ([38, Theorem 3.1]). Let A ∈ R
m×m be partitioned as

A =

[

A11 A12

A21 A22

]

where A11 ∈ R
(m−1)×(m−1), A12, A

T
21 ∈ R

m−1, and A22 < 0. Then A is diago-
nally stable if and only if A11 and the quantity (A11 − A12A21/A22) have a com-
mon diagonal Lyapunov function, i.e., there exists a positive diagonal P such that
AT

11P + PA11 < 0 and (A11 −A12A21/A22)
TP + P (A11 −A12A21/A22) < 0.
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Lemma 1. For any steady state solution x∗ of (T8) satisfying −Ax∗ = r there
exists b, c, d, s such that any z∗ ∈ R

m
>0 can be made to be a steady state solution of

(T10).

Proof. Any steady solution of (T10) satisfies the relation g = −Fz∗, which when
expanded denotes the following relation

[

r
s

]

= −
[

A b
cT d

] [

z∗1:n
z∗m

]

.

There are 2n+2 degrees of freedom in the variables b, c, d, s and there are only n+1
constraints. The variable b is fixed by the top row of the above equation and can
be expressed in closed form as

b = −r +Az∗1:n
z∗m

. (T11)

Then for any c and d, s can be chosen as

s = −cTz∗1:n − dz∗m. (T12)

Corollary 7. For any steady state solution x∗ of (T8) satisfying −Ax∗ = r, and
given any c ∈ R

n and d ∈ R there exists b, s such that any z∗ ∈ R
m
>0 can be made to

be a steady state solution of (T10).

Theorem 8. For the dynamics in (T8) with p = 1 satisfying Assumption 3 there
exists b, c, d, s such that any z∗ ∈ R

m
>0 can be made to be asymptotically stable for

all initial conditions in the positive orthant.

Proof. From Lemma 1 it follows that for any z∗, c and d the elements s, b are fixed.
Now we will show that for any c there exists a d such that z∗ is asymptotically stable.
We begin by assuming that b and s are fixed by (T11) and (T12). From Assumption
3 we know that A is diagonally stable, and thus there exists an ǫ > 0 and diagonal
matrix P > 0 such that ATP +PA ≤ −ǫI, where I is an appropriately dimensioned
identity matrix. Choosing d < 0 and |d| > 2λmax(P )‖bcT‖/ǫ, and noting that

(A− bcT/d)TP + P (A− bcT/d) ≤ −ǫI + 2λmax(P )‖bcT‖/d
we can deduce that (A − bcT/d)TP + P (A − bcT/d) < 0. Thus (A − bcT/d) and A
have a common diagonal Lyapunov function. This, in addition with the fact that
d < 0, the conditions of Theorem 6 are satisfied and thus F is diagonally stable.
Now, applying Theorem 5 to the dynamics in (T10) we deduce that z(t) can be
made to be asymptotically stable for all z(t0) ∈ R

m
>0.

4.3.2 Adding an arbitrary number of species

For the following examples we are interested in the m = n+p dimensional dynamics

ż(t) = diag(z(t))(g + Fz(t)) (T13)

where

g =

[

r
s

]

, and F =

[

A B
CT D

]

,

with A and r are as defined in (T8), and we have introduced the new elements
s ∈ R

p, D ∈ R
p×p and B,C ∈ R

n×p. These dynamics represent the addition of p
new species to the ecological system in (T8).
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Theorem 9. For any steady state solution x∗ of (T8) satisfying −Ax∗ = r there
exists B,C,D, s such that any z∗ ∈ R

m
>0 can be made to be a steady state solution

of (T13). Furthermore, if A is diagonally stable, then B,C,D, s can be chosen such
that the system in (T13) is uniformly asymptotically stable in the positive orthant.

Proof. Any steady solution of of (T13) satisfies the relation g = −Fz∗ which when
expanded denotes the following relation

[

r
s

]

= −
[

A B
CT D

] [

z∗1:n
z∗(n+1):m

]

.

There are 2np+p2+p degrees of freedom in the variables B,C,D, s. The variable B
is fixed by the top row of the above equation and must satisfy the following relation

Bz∗(n+1):m = −(r +Az∗1:n).

There are n × p degrees of freedom in the selection of B and only n constraints in
the above equation. Thus such a B always exists for any r, A, and z∗. For any C
and D, s can be chosen as

s = −CTz∗1:n −Dz∗(n+1):m.

Finally, we show that with the extra degrees of freedom in C and D there always
exists a diagonal P1 > 0 and P2 > 0 such

[

A B
CT D

]T [

P1 0
0 P2

]

+

[

P1 0
0 P2

] [

A B
CT D

]

< 0. (T14)

Given that by assumption there exists a diagonal P1 > 0 such Ã , ATP1 + P1A,
then by the Schur complement the inequality in (T14) holds if an only if

DTP2 + 2P2D − (BTP1 + P2C
T)Ã−1(CP2 + P1B) < 0.

Given any A,B,C and positive diagonal P1, P2 there always exists a D such that
the above inequality holds.

4.3.3 Removing an arbitrary number of species.

Diagonally stable matrices have a very special property that every principle minor
is also diagonally stable, giving us the following definition and theorem.

Definition 4. Let L be a proper subset of N , {1, 2, . . . , n} then a principle minor
of A ∈ R

n×n is the matrix obtained by omitting the columns and rows of A whose
index appear in L.

Theorem 10 ([8, Theorem 1]). If A ∈ R
n×n is diagonally stable, then all principle

minors of A are also diagonally stable.

In the context of Lotka-Volterra dynamics this implies that if a given systems is
diagonally stable, then even if an arbitrary numbers of species are removed from the
system, the resulting system is still uniformly asymptotically stable in the positive
orthant.

Corollary 11. A necessary condition that A is diagonally stable is that all of its
diagonal elements must be strictly negative.
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4.4 Robustness to disturbances.

We now consider three classes of Lotka-Volterra dynamics in the presence of distur-
bances, the first two are determinstic and the second is stochastic.

4.4.1 Deterministic Dynamics

In this section we will analyze the following two dynamical systems

ẋ(t) = diag(x(t))(r +Ax(t) + w(t)) (T15)

and
ẋ(t) = d(t) + diag(x(t))(r +Ax(t)) (T16)

where d(t) and w(t) are known to be a priori bounded. In (T15) the term w(t)
represents uncertainty in the growth rates of the species. While in (T15) the term
w is deterministic, in the since that it is bounded, in terms of the ecology literature
this term is sometimes referred to as the stochastic effect. Note that we will treat
this term in a purely stochastic since shortly, complete with Itô calculus. The term
d(t) is a migration term. The following theorems show that in the presence of these
disturbances, the systems are bounded for all initial conditions (in the positive
orthant).

Theorem 12. If the system in (T15) satisfies Assumptions 1-3 with ‖d(t)‖ ≤ α
then the state x is uniformly bounded for all initial conditions x0 ∈ R

n
>0.

Proof. The proof is given for two different scenarios. The first scenario (when the
disturbance is small) uses the same Lyapunov function as was used in the analysis of
the disturbance free dynamics. In the second scenario a new Lyapunov candidate is
introduced. A few definitions are needed before the different scenarios are analyzed.
Let P be a diagonal positive solution to the Lyapunov equation ATP + PA = −Q,
where Q = QT > 0, and pi denotes the i-th diagonal element of P , just as in the
disturbance free case. Let qmin denote the minimum eigenvalue of Q and pmax denote
the maximum diagonal element in P . Scenario: (a) the compact set

{x : ‖x− x∗‖ ≤ 2pmaxα/qmin}

does not intersect any of the n-axes; and (b) when the above compact set does
intersect at least one of the n-axes.

We now address the stability of Scenario (a). Let

V (x) = 2

n
∑

i=1

pi(xi − x∗i − x∗i log(xi/x
∗
i )) (T17)
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be a Lyapunov candidate. Differentiating the Lyapunov candidate it follows that

V̇ (x) = 2

n
∑

i=1

pi

(

ẋi − x∗i
ẋi
xi

)

= 2

n
∑

i=1

pi(xi − x∗i )
ẋi
xi

= 2
n
∑

i=1

pi(xi − x∗i )



bi + di(t) +
n
∑

j=1

aijxj





= 2

n
∑

i=1

pi(xi − x∗i )



di(t) +

n
∑

j=1

aij(xj − x∗j)





= (x− x∗)T(ATP + PA)(x− x∗) + 2(x− x∗)TPd.

Recall that qmin denotes the minimum eigenvalue of Q and pmax denotes the maxi-
mum diagonal element in P , then it follows that

V̇ ≤ −qmin‖x− x∗‖2 + 2pmax‖x− x∗‖α.

Thus for all ‖x− x∗‖ > 2pmaxα/qmin, V̇ < 0 and thus V (x(t)) <∞ for all t ≥ t0. It
follows that for all x0 ∈ R

n
>0 the state x(t) is bounded. Note that x(t) can never be

negative due to the fact that the disturbance appears as xi(t)di(t). This completes
the proof for Scenario (a).

Scenario (b) has to be treated differently do to the fact that if any of the xi = 0,
then it follows that for the Lyapunov candidate in (T17) V = ∞. This was not
possible in Scenario (a), but is possible in Scenario (b). We define a new Lyapunov
candidate

V (x) = 2

n
∑

i=1

vi(xi) (T18)

where

vi(x) =

{

pi(xi − x∗i − x∗i log(xi/x
∗
i )) x∗i ≤ xi

0 0 ≤ xi < x∗i .

For a general set of dynamics the above candidate function could not be a Lyapunov
candidate. However, do to the special form of the Lotka-Volterra dynamics x(t) ∈
Rn≥0 for all time regardless of the specific coefficients. Any population dynamic
model should have this property, as negative abundances would make no sense.
Differentiating V in (T18) we have that

V̇ (x) = 2

n
∑

i=1

v̇i(xi)

where

v̇i(x) =

{

pi(xi − x∗i )
(

di(t) +
∑n

j=1 aij(xj − x∗j )
)

x∗i ≤ xi

0 0 ≤ xi < x∗i ,
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which is continuous in x, note that pi(xi−x∗i )
(

di(t) +
∑n

j=1 aij(xj − x∗j)
)

= 0 when

xi = x∗i .
We now define the index set for all species as

I = {i : 0 ≤ i ≤ n, i ∈ N} (T19)

and the set of indices for species abundances that are greater than x∗i is defined as

S = {i : xi > x∗i } ⊂ I. (T20)

Using this notation we can write the derivative of the Lyapunov function as

V̇ (x) = 2
∑

i∈S
pi(xi − x∗i )



di +
∑

j∈S
aij(xj − x∗j ) +

∑

j∈Sc

aij(xj − x∗j)



 .

The above equation can be rewritten in a more compact matrix-vector form as

V̇ (x) = (xS − x∗S)
T

(

AT

S,SPS,S + PS,SAS,S
)

(xS − x∗S) + 2(xS − x∗S)
TPS,SdS

+ 2 (xS − x∗S)
T PS,SAS,Sc (xSc − x∗Sc) .

(T21)

Using Theorem 10 we can exploit a very unique property of diagonal Lyapunov
functions, and that is the diagonal stability of all principle submatrices. It is also
easy to confirm that the same P matrix can be used for the sub-diagonal Lyapunov
equations. Therefore, it follows that AT

S,SPS,S + PS,SAS,S = −QS,S < 0 for any S.
Using the following definitions

q′min(S) = min
i
λi(QS,S)

p′max(S) = max
i
λi(PS,S)

β′(S) = ‖AS,Sc‖,

(T22)

the equality in (T21) can be bounded as

V̇ (x) ≤ −q′min(S)‖xS − x∗S‖2 + 2p′max(S)‖xS − x∗S‖
(

α+ β′(S)‖xSc − x∗Sc‖
)

.

Given our definition of S it follows that ‖xSc − x∗Sc‖ ≤ ‖x∗Sc‖ ≤ ‖x∗‖. This allows
the above inequality to be further simplified as

V̇ (x) ≤ −q′min(S)‖xS − x∗S‖2 + 2p′max(S)‖xS − x∗S‖
(

α+ β′(S)‖x∗‖
)

. (T23)

The bound in (T23) is still not sufficient to address stability as the bounds depend on
the set of indices in S. In a two step process we obtain uniform constants and then
introduce a distance function that is independent of S. We will now give uniform
analogs to the bounds q′min(S), p′max(S), β′(S) by taking the appropriate supremum
or infimum over the powerset 2I of all subsets S ⊂ I. The powerset of interest is
finite and thus the following are well defined

q̄ = inf
S⊂I\∅

q′min(S)

p̄ = sup
S⊂I

p′max(S)

β̄ = sup
S⊂I

β′(S).
(T24)
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Using the uniform bounds above the inequality in (T23) can be replaced by

V̇ (x) ≤ −q̄‖xS − x∗S‖2 + 2p̄‖xS − x∗S‖
(

α+ β̄‖x∗‖
)

. (T25)

We now define a distance metric between an element y ∈ R
n and a compact set

A ∈ R
n as

d(y,A) , inf{‖y − z‖ : z ∈ A}. (T26)

Given that A is compact, such a z ∈ A always exists. Our compact set of interest
is defined as

X = {x : 0 ≤ xi ≤ x∗i }. (T27)

Using the compact set defined just above, the inequality in (T25) can be equivalently
rewritten as

V̇ (x) ≤ −q̄d(x,X )2 + 2p̄d(x,X )
(

α+ β̄‖x∗‖
)

.

Thus for all d(x,X ) > 2p̄
(

α+ β̄‖x∗‖
)

/q̄, V̇ < 0. Therefore V (x(t)) is bounded for
all t ≥ t0.

Theorem 13. If the system in (T16) satisfies Assumptions 1-3 with ‖d(t)‖ ≤ α and
furthermore we exclude the possibility for the disturbance to generate negative state
values2, then the state x is uniformly bounded for all initial conditions x0 ∈ R

n
>0.

Proof. Consider the Lyapunov candidate in (T18) and differentiating along the sys-
tem dynamics in (T16) it follows that

V̇ (x) = 2
∑

i∈S
pi(xi − x∗i )



di/xi +
∑

j∈S
aij(xj − x∗j ) +

∑

j∈Sc

aij(xj − x∗j )



 .

where S ⊂ I was defined in (T19) and (T20). Rearranging terms slightly with
regard to di/xi it follows that

V̇ (x) = 2
∑

i∈S
pi(xi−x∗i )





∑

j∈S
aij(xj − x∗j) +

∑

j∈Sc

aij(xj − x∗j)



+2
∑

i∈S
dipi(1−x∗i /xi).

Given our definition of S it follows that (1 − x∗i /xi) ≤ 1 when i ∈ S. Therefore it
follows that

V̇ (x) ≤ 2
∑

i∈S
pi(xi − x∗i )





∑

j∈S
aij(xj − x∗j) +

∑

j∈Sc

aij(xj − x∗j )



+ 2
∑

i∈S
|di| pi.

The above inequality can be rewritten in a more compact matrix-vector form as

V̇ (x) ≤ (xS − x∗S)
T

(

AT

S,SPS,S + PS,SAS,S
)

(xS − x∗S) + 2‖PS,S‖‖dS‖

+ 2 (xS − x∗S)
T PS,SAS,Sc (xSc − x∗Sc) .

Using the bounds in (T22) the above inequality can be reduced to

V̇ (x) ≤ −q′min(S)‖xS − x∗S‖2 + 2p′max(S)‖xS − x∗S‖β′(S)‖xSc − x∗Sc‖+ 2p′max(S)α.
2This is not a restrictive assumption in the context of ecology as a disturbance can never result

in the creation of a negative population.
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Given our definition of S it follows that ‖xSc − x∗Sc‖ ≤ ‖x∗Sc‖ ≤ ‖x∗‖. This allows
the above inequality to be further simplified as

V̇ (x) ≤ −q′min(S)‖xS − x∗S‖2 + 2p′max(S)‖xS − x∗S‖β′(S)‖x∗‖+ 2p′max(S)α. (T28)

Using the definitions in (T24) and the set distance function in (T26) with the com-
pact set X defined in (T27) the above inequality can be written as

V̇ (x) ≤ −q̄d(x,X )2 + 2p̄d(x,X )β̄‖x∗‖+ 2p̄α

Rewriting the above inequality as

V̇ (x) ≤ − q̄
2
d(x,X )2 − q̄

2

(

d(x,X )2 − 4
p̄

q̄
d(x,X )β̄‖x∗‖

)

+ 2p̄α

and completing the square with respect to the middle term q̄
2

(

d(x,X )2 − 4 p̄q̄d(x,X )β̄‖x∗‖
)

the following inequality holds

V̇ (x) ≤ − q̄
2
d(x,X )2 − q̄

2

(

d(x,X ) − 2
p̄

q̄
β̄‖x∗‖

)2

+ 2p̄α+ 2
p̄2β̄2‖x∗‖2

q̄

Noting that the term − q̄
2

(

d(x,X ) − 2 p̄q̄ β̄‖x∗‖
)2

≤ 0 it follows that

V̇ (x) ≤ − q̄
2
d(x,X )2 + 2p̄α+ 2

p̄2β̄2‖x∗‖2
q̄

(T29)

From the inequality in (T29) it follows that

d(x,X ) > 2

√

p̄α

q̄
+
p̄2β̄2‖x∗‖2

q̄2

implies V̇ < 0. Therefore, x(t) is uniformly bounded and asymptotically converges
to the compact set

d(x,X ) ≤ 2

√

p̄α

q̄
+
p̄2β̄2‖x∗‖2

q̄2
.

4.4.2 Stochastic Dynamics

In this section we wish to analyze a stochastic differential equation that is similar
to (T15), but we no longer make the assumption that the disturbance is bounded,
instead we assume that the disturbance appears as a Brownian motion w(t) ∈ R

n,
resulting in the following differential equation,

dx = diag(x)(r +Ax) dt+ c diag(x) dw. (T30)

The variable c ∈ R will be a constant used to scale the square root of the variance of
the brownian motion. It will be shown that x(t) converges in a probabilistic since to
a compact set which is proportional to c. The analysis of stochastic differentials is
significantly more challenging than their deterministic counterparts. Before stating
the stochastic version of the stability result, we first need to formally define filtration,
Brownian motion, and give a key result of Itô. In this work the linear ordered set
of interest will always be time t ∈ [t0,∞). All of the following definitions are given
in a less general context compared to their original presentation [11].
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Definition 5 (Stochastic Process, [11, Part 2 §I.8]). Let (Ω,F ,P) be a probability
space. A stochastic process on (Ω,F ,P, [t0,∞)) is a family of random variables
{y(t), t ∈ [t0,∞)} with map (t, ω) 7→ y(t, ω) from [t0,∞) × Ω to R, the variable
space of interest. Given that each instance in time y(t) is a random variable, the
variable space R = (R,R) is necessarily a measurable space.

Definition 6 (Filtration, [11, Part 2 §I.1]). Let (Ω,F) be a measurable space and
t ∈ [t0,∞) is time, then a filtration of that measurable space is a map t 7→ F(t) of
increasing sub σ algebras such that F(s) ⊂ F(t) ⊂ F when s ≤ t.

Definition 7 (Adaptation, [11, Part 2 §I.1]). Let {y(t), t ∈ [t0,∞)} be a stochastic
process from a filtered measure space {Ω,F ,F(·)} into the measurable space {R,R}.
The process is adapted to F(·) if for each t, y(t) : (Ω,F(t)) → (R,R) is measurable.

Definition 8 (Progressively Measurable, [11, Part 2 §I.2]). Let {y(t),F(t), t ∈
[t0,∞)} be an adapted stochastic process. The function y : [t0,∞)×Ω → R, where
(R,R) is a measurable space, is deemed progressively measurable if

y : ([t0, t]×Ω,Borel([t0, t])×F(t)) → (R,R)

is measurable for any t ≥ t0.

Let us pause now and discuss these definitions. Defining a stochastic processes
is rather obvious. We extended the definition of a random variable to incorporate
time. At each fixed instance a stochastic process is nothing but a random variable.
The extra definitions and the progression from filtrations, adaptations, and progres-
sive measurability, are needed so that we can better understand what is needed to
perform the following integration [39, Remark 7.1.1]. Let {y(·),F(·)} be an adapted
stochastic process defined as before where y : [t0,∞) × Ω → R. Let f : R → R

be bounded and R measurable, then the map (t, ω) 7→ z =
∫ t
t0
f(y(τ, ω)) dτ need

not be adapted. However if in addition to being adapted the stochastic process
is progressively measurable, then z will be progressively measurable as well. This
process is a key necessary ingredient when studying stochastic differential equations
as it can be inherited. Next we formally define a Brownian motion and give a suf-
ficient condition for the adaptation so that the progressive measurability condition
is satisfied.

Definition 9 (Brownian, [11, Part 2 §VII.2 ]). A Brownian motion is an adapted
stochastic process {w(·),F(·)} from the filtered probability space (Ω,F ,P,F(t), t ∈
[t0,∞)) into the measurable space (Rn,Borel(Rn))

• that is Markovian, i.e. when s < t and A ∈ Borel(Rn) it follows that

P(w(t) ∈ A|F(s)) = P(w(t) ∈ A|w(s))
almost surely.

• with a stationary stochastic transition function (the transition function is in-
dependent of the current time of the process) with density ρ(t, ψ − ξ) defined
on R×R

n relative to the n-dimensional Lebesgue measure, where ρ is defined
as

ρ(t, ψ;σ, t0) =

{

(2πσ2t)−n/2exp−|ψ|2
2σt if t > t0

0 if t ≤ t0,

where t ∈ R is time and ψ ∈ R
n is the space variable.
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• that is almost surely continuous

We are almost ready to address the problem at hand, however we still need to
show how we can ensure that the Brownian motion is progressively measurable.
Unfortunately we need a few more definitions and then we will show that Brown-
ian motions can be naturally adapted so as to have the progressive measurability
property.

Definition 10 (Right Continuous Filtration, [11, Part 2 §I.1 ]). Let (Ω,F ,F(t), t ∈
[t0,∞)) be a filtered measurable space, and define F+(t) =

⋂

s>tF(s) for all t ∈
[t0,∞). The filtration is right-continuous if F(·) = F+(·).

Theorem 14. Let {y(·),F(·)} be a Brownian motion into R
n with respect to time

t ∈ [t0,∞), and if F(t) is generated by the null sets and σ(y(s); s ≤ t), the smallest
sigma algebra for which all y(s) are measureable for all s ∈ [t0, t], then F(·) = F+(·)

Proof. see [11, Part 2, §VI, Theorem 8]

This theorem implies that one can assume without loss of generality that the
filtration is right-continuous. That is, there is a natural way to construct them for
any brownian motion.

Theorem 15. Let {y(·),F(·)} be a Brownian motion with right-continuous filtration
containing the null sets, then the Brownian motion is progressively measurable.

Proof. see [31, Part A Theorem 47]

As stated before, this progressive measurability is necessary when discussing
the solutions to stochastic differential equations as it allows for integrals containing
stochastic processes to inherit the progressively measurable property. We now state
a classic result do to Itô [18]. Our version follows from [11, Part 2 §VIII.12].

Lemma 2. Let {w(·),F(·)} be a Brownian motion into R
n with a right-continuous

filtration containing the null sets. Consider the dynamics x(t) ∈ R
n given by

dx = µdt+ σdw

where t ∈ [t0,∞), µ(x) ∈ R
n is locally Lipschitz in x, and σ(x) ∈ R

n×n is globally
Lipschitz in x. Assuming (x, t) 7→ f(x, t) ∈ R is twice differentiable and continuous
in terms of x (class C2 with respect to x) and once differentiable and continuous in
terms of t (class C1 with respect to t), then

df =
∂f

∂t
dt+ (∇xf)

Tµ dt+
1

2
tr(σHessx(f)σ) dt+ (∇xf)

Tσ dw.

Remark 2. In most constructions it is assumed that µ is globally Lipschitz. Indeed
this assumption was made in one of Itô’s original papers [19]. A detailed discussion
regarding the existence of solutions when only locally Lipschitz conditions are as-
sumed can be found in [36]. Exploiting the stability of our dynamics the existence
and uniqueness of solutions can be deduced directly from the original work of Itô
however. In our analysis we will show that for the dynamics of interest the state is
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uniformly bounded almost surely, a formal definition is given just below this remark.
Therefore, we can define equivalent dynamics

dx̄ = µ̄dt+ σdw

where µ̄ = µ on the compact set of interest, and zero outside this compact set. Given
that µ is locally Lipschitz it follows that the function µ̄ with compact support is
by definition globally Lipschitz. Solutions x̄ exist, are unique, and are uniformly
bounded almost surely. This then implies the existence and uniqueness of x for the
dynamics dx = µdt+ σdw on the same compact set which x(·) remains in, almost
surely.

Definition 11. The state x(t; t0, x0) as a solution to the difference equation in (T30)
is uniformly bounded with probability one if for ever r > 0 there exists a B(r) > 0
such that ‖x(t0)‖ ≤ r implies

P

(

sup
t
‖x(t)‖ ≤ B(r)

)

= 1

for all t ≥ t0. An equivalent statements would be x(t) is uniformly bounded almost
surely.

Theorem 16. Consider the dynamics in (T30) for x(t) ∈ R
n. Let assumptions 1-3

hold with {w(·),F(·)} a Brownian motion into Rn with a right-continuous filtration
containing the null set. The following then hold

1. The state variable x(·) is uniformly bounded in expectation,

2. x(·) is uniformly bounded with probability one, and

3. x(·) asymptotically converges to the compact set

D ,

{

x : ‖x− x∗‖ ≤ c

√

nx∗maxpmax

qmin

}

(T31)

with probability one. Stated more precisely,

P
(

lim
t→∞

x(t) ∈ D
)

= 1. (T32)

Sketch of the proof. This proof only outlines the analysis when the compact set D
does not intersect any of the n-axes. The more complicated scenario when this is not
the case can be handled just as it was in the proof of Theorem 12. Consider the Lya-
punov candidate V (x) = 2

∑n
i=1 pi(xi − x∗i − x∗i log(xi/x

∗
i )). Taking the differential

along the lines of Lemma 2 (Itô) results in

dV = (∇xV )Tdiag(x)(r +Ax) dt+
c2

2
tr(diag(x)Hessx(V ) diag(x)) dt

+ (∇xV )Tc diag(x) dw (T33)

Recall from the steps in the proof of Theorem 12 that

(∇xV )T diag(x)(r +Ax) = −(x− x∗)TQ(x− x∗)
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where ATP + PA = −Q. Thus giving

dV = −(x− x∗)TQ(x− x∗) dt+
c2

2
tr(diag(x)Hessx(V ) diag(x)) dt

+ (∇xV )Tc diag(x) dw (T34)

Next, note that [Hessx(V )]ii = 2
pix

∗

i

x2i
and [Hessx(V )]ij = 0 when i 6= j. Substitution

into the above equation results in

dV = −(x− x∗)TQ(x− x∗) dt+ c2
∑

i

pi dt+ (∇xV )Tc diag(x) dw (T35)

Note that x(t) and dw(t) are independent, x(t) is only dependent on dw(s) when
s < t. Therefore E((∇xV )Tc diag(x) dw) = 0, given that for a Brownian motion
E dw = 0.3 Therefore

E dV

dt
≤ −qmin‖x− x∗‖2 +c2nx∗maxpmax (T36)

where qmin is the minimum eigenvalue of Q, pmax is the maximum diagonal element
in P , and x∗max is the value in the vector x∗. Therefore,

‖x− x∗‖ > c

√

nx∗maxpmax

qmin
=⇒ E dV

dt
< 0. (T37)

Given that EdV/dt ≤ 0 outside a compact set it follows that EV is uniformly
bounded in terms of the initial condition x(t0) [25, Lemma 5.4]. Given that V (x) ≥ 0
is continuous in x and convex it follows from Jensen’s inequality that Ex is uniformly
bounded as well [22]. Jensen’s inequality will be used without reference from this
point forward. Claim 1 has been proven.

We now move on to the second claim, namely that the dynamics are uniformly
bounded with probability one. We address this claim with sub scenarios: (a) x(t0) /∈
D, and (b) x(t0) ∈ D. Under scenario (a) we will now show that P(supV (x(t)) −
V (x(t0) ≤ δ1) = 1 for any δ1 ∈ (0,∞). The previous statement is equivalent to
P(supV (x(t))−V (x(t0) > δ1) = 0. This statement will be proved by contradiction.
Assume that there exists a δ2 ∈ (0, 1] such that P(supV (x(t))−V (x(t0) > δ1) ≥ δ2.
Using Markov’s inequality it follows that

E supV (x(t)) − V (x(t0)) ≥ δ1δ2.

This statement however contradicts (T37) which states that outside the compact
set of interest the expected value of the Lyapunov candidate is strictly decreasing.
Therefore it follows that P(supV (x(t)) − V (x(t0) > δ1) = 0 which is equivalent to
the claim that P(supV (x(t))−V (x(t0) ≤ δ1) = 1. Application of Jensen’s inequality
then implies that x is uniformly bounded with probability one for sub-scenario (a).

3In order to address this rigorously we would rewrite the expression in (T35) in integral form.
Then we would integrate only up to a stopping time which we designed so that (∇xV )Tc diag(x) <
∞ up to the time of interest. Then we would use the fact that Egw = 0 for any bounded g. The
bound used to generate the stopping time would then be relaxed and the desired result would be
obtained as t → ∞ using Fatou’s Lemma and monotone convergence. A similar procedure is carried
out in [9, (4.3)-(4.5)]
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We now address sub-scenario (b) where it is assumed that x(t0) ∈ D. If x(·)
remains in D for all time, then we are done and the state is uniformly bounded.
Therefore, assume at some time t1 the state x(t1) /∈ D. This sub-scenario is now
equivalent to sub-scenario (a) with time shifted. Therefore, it follows that x is
uniformly bounded with probability 1 in sub-scenario (b) as well. This completes
the proof of claim 2.

We approach claim 3 following a method proposed in the proof of [9, Theorem
2.1]. Consider the probability of three mutually exclusive scenarios, just as in [9,
Theorem 2.1]

p1 = P

(

lim sup
t→∞

d(x(t),D) = 0

)

p2 = P
(

lim inf
t→∞

d(x(t),D) > 0
)

p3 = P

(

lim inf
t→∞

d(x(t),D) = 0 and lim sup
t→∞

d(x(t),D) > 0

)

We wish to prove that p1 = 1 and p2, p3 = 0.
We first prove that p2 = 0. This will be proved by contradiction. Assume p2 = ǫ1

where ǫ1 ∈ (0, 1], then there exists an ǫ2 such that P (lim inft→∞ d(x(t),D) ≥ ǫ2) =
ǫ1. Using Markov’s inequality it follows that

1

ǫ2
E lim inf

t→∞
d(x(t),D) ≥ ǫ1.

Multiplying both sides by ǫ2 it follows that

E lim inf
t→∞

d(x(t),D) ≥ ǫ1ǫ2.

From the definition of lim inf it follows that for any ǫ3 ∈ (0, ǫ1ǫ2) there exist a finite
T1 ∈ [t0,∞) such that

E d(x(t),D) ≥ ǫ3 for all t ≥ T1. (T38)

Therefore, for t ≥ T1 it follows that EdV/dt < 0. Given that V (x∗) = 0 and V (x) is
strictly increasing away from x = x∗ and tends to infinity for large x in the positive
orthant it follows that E‖x − x∗‖ is strictly decreasing in time. Given that D is
centered at x∗, there exists T2 such that

E d(x(t),D) < ǫ3 for all t ≥ T2.

which contradicts (T38). Therefore p2 = 0. That is

P
(

lim inf
t→∞

d(x(t),D) > 0
)

= 0.

We now establish that p3 = 0. As before we achieve this by contradiction. For
any ǫ5 > 0 assume

P

(

lim inf
t→∞

d(x(t),D) = 0 and lim sup
t→∞

d(x(t),D) ≥ ǫ5

)

6= 0. (T39)
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For any ǫ6 and ǫ7 such that 0 < ǫ7 < ǫ6 < ǫ5, consider the stopping times4 T ′
i : Ω →

[t0,∞), T ′′
i : Ω → [t0,∞) with i ∈ N>0, where

T ′
i = inf

{

t ≥ T ′′
i−1 : d(x(t),D) ≤ ǫ7

}

T ′′
i = inf

{

t ≥ T ′
i : d(x(t),D) ≥ ǫ6

}

.

From (T39) and the stopping times defined above, it follows that

lim
i→∞

T ′
i = ∞ and lim

i→∞
T ′′
i = ∞

In order to continue with this proof by contradiction we need to obtain a lower
bound on the expectation T ′

i+1 − T ′′
i . Indeed if this can be done, then we expect

the solutions to the differential equation to spend a non negligible amount of time
within a domain of the state space where the Lyapunov function will be decreasing.
Thus we can see how this may lead to a contradiction, for how can trajectories
be expected to spend an infinite amount of time in a domain where the Lyapunov
function is always decreasing. Following the same procedures as in the proof of the
bound in [9, (2.27)] it can be shown that there exists an ǫ8 > 0 such that

E
(

T ′
i+1 − T ′′

i | F(T ′′
i )
)

≥ ǫ8.

Using the bound above and the definition of D in (T31) it follows that

E

(

∫ T ′

i+1

T ′′

i

qmin‖x(τ)− x∗‖2 − c2nx∗maxpmax dτ
∣

∣

∣
F(T ′′

i )

)

≥
(

qminc

√

nx∗maxpmax

qmin
ǫ6 + qminǫ

2
6

)

ǫ8

From the bound in (T36) it follows that

V (x(t0)) ≥E

∫ ∞

t0

qmin‖x(τ)− x∗‖2 − c2nx∗maxpmax dτ

≥
∞
∑

i=1

(

qminc

√

nx∗maxpmax

qmin
ǫ6 + qminǫ

2
6

)

ǫ8P(T ′′
i <∞).

Noting that V (x(t0)) < ∞, it then follows from the Borel-Cantelli Lemma [10,
Chapter III, Theorem 1.2] that P(∃N < ∞ s.t. ∀i ≥ N, T ′′

i < ∞) = 0 [9, (2.28)-
(2.31)]. This implies that P (lim supt→∞ d(x(t),D) ≥ ǫ5) = 0 which contradicts
(T39). Therefore p3 = 0, that is

P

(

lim inf
t→∞

d(x(t),D) = 0 and lim sup
t→∞

d(x(t),D(0)) > 0

)

= 0.

Finally, given that the events associated with p1, p2, and p3 are nonintersecting, it
follows that p1 = 1. Summarizing, we have shown that

p1 = P

(

lim sup
t→∞

d(x(t),D) = 0

)

= 1

p2 = P
(

lim inf
t→∞

d(x(t),D) > 0
)

= 0

p3 = P

(

lim inf
t→∞

d(x(t),D) = 0 and lim sup
t→∞

d(x(t),D(0)) > 0

)

= 0,

4For more detail on stopping times see [11, Part 2, Chapter II].
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and thus claim 2 of the theorem has been proven. We wish to reiterate the fact that
this sketch barrows heavily from [9]. In most instances intermediate steps where
stopping times are needed were glossed over. It might be worthwhile to revisit this
analysis in the future, seeing as there does not seem to be much literature along this
direction other than the references here in.

Remark 3. The definition given for uniformly bounded in probability in this work is
stronger than any other definitions that could be found in the literature and follows
the classic definition, see Definition 2 and compare it to Definition 11. A trajectory
is uniformly bounded in probability, if for all r > 0 there exists a B(r) > 0 such
that ‖x(t0)‖ ≤ r implies

P

(

sup
t
‖x(t)‖ ≤ B(r)

)

= 1

for all t ≥ t0. In [9, Definition 2.2] the following definition is given, for all r > 0 and
any ǫ > 0 there exists a B(r, ǫ) > 0 such that ‖x(t0)‖ ≤ r implies

P

(

sup
t
‖x(t)‖ ≤ B(r)

)

= 1− ǫ.

In [25, §1.4] the definition of uniformly bounded is defined as follows,

sup
t

P(‖x(t)‖ > R) → 0 as R→ ∞.

Our definition of asymptotic attractivity follows that of Deng and Kristić [9] as it is
allready as strong as the classic definition. Again however the often cited work by
Khasminskii [25] gives a much weaker definition. Compare the following definitions
for asymptotically attracting

P
(

lim
t→∞

‖x(t)‖ = 0
)

= 1 ([9, Definition 2.2])

lim
x0→0

P
(

lim
t→∞

‖x(t)‖ = 0
)

= 1. ([25, Equation (5.15)])

It is imperative when discussing stability that uniform bounds are achieved.

4.5 Diagonal Stability of Random Matrices

Theorem 17. If An ∈ R
n×n is chosen as

[An]ij ∼
1

√

(2 + δ)n
N (0, 1), i 6= j

for any δ > 0, and [An]ii = −1, then An is asymptotically almost surely diagonally
stable.

Proof. Consider the random matrix Ān ∈ R
n×n defined as

[Ān]ij ∼
1

√

(2 + δ)n
N (0, 1), i 6= j,
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and [Ān]ii = 0. Then it follows from (T2) that Var[Ān]ij = 1
(2+δ)n for i 6= j. Let

B̄n = Ān+ ĀT
n , then it follows that Var[B̄n]ij =

2
(2+δ)n when i 6= j and 0 otherwise.

From Theorem 3 we have that

sup
1≤i≤n

λi(B̄n) = 2

√

2n

(2 + δ)n
(1 + o(1))

< 2(1 + o(1))

as n → ∞ asymptotically almost surely. Noting that AT
n + An ≡ B̄n − 2In×n it

follows that AT
n +An < 0 asymptotically almost surely.

Corollary 18. If An ∈ R
n×n i is chosen as

[An]ij ∼ N
(

0,
1

(2 + δ)n

)

, i 6= j,

for any δ > 0, and [An]ii = −1, then An is asymptotically almost surely diagonally
stable.

5 Clustering Analysis and Ordination Methods

In the following section clustering techniques are explored in detail as well as ordi-
nation techniques for visualizing data.

5.1 Distance and Metrics

Let x = [x1, x2, . . . , xn]
T ∈ R

n, then the Euclidian norm is defined as

‖x‖ =

(

n
∑

i=1

x2i

)1/2

.

For a row vector the euclidian norm is similary defined. If no subscript is given with
‖·‖ then we assume the Euclidian norm is being used. The following is the Euclidian
distance function d(x, y) = ‖x− y‖.

A common distance metric used in ecology is the Jensen-Shannon Distance
(JSD) metric [21,27,29]

JSD(y, z) ,
√

1
2JS(y, z), (T40)

where the Jensen-Shanon divergence, JS(y, z) , KL(y, 12(y+z))+KL(z, 12(z+y)), is

simply the symetrized version of the Kulback-Liebler directed divergence KL(y, z) ,
∑p

i=1 yi log
yi
zi
. So as to not divide by zero, a pseudo count of 1e-10 is added to zero

elements before performing the JSD.

5.2 k-Medoids

Assume that one has a collection of samples X ∈ R
n×p where n is the total number

of samples and p is the dimension of each sample. Let Xi ∈ R
1×p, i = 1, 2, . . . , n,
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be the row vectors of X as defined below

X =











X1

X2
...
Xn











. (T41)

We would like each Xj to belong to a unique cluster within a collection of
k possible clusters C1, C2, . . . , Ck. The unique cluster that contains sample Xj is
denoted C(j; k). If sample Xj is contained in cluster 3 then C(j) = C3. If one is
given an a-priori number of clusters then it is possible to perform this task using the
popular paradigm of k-medoids. The paradigm works as follows. Initially, k samples
are chosen at random as representative medoids. k clusters are then constructed by
associating other samples to the nearest medoid. Within each cluster all elements
are tested so as to see if a different sample has a smaller within cluster sum of
distances. The element with the smallest within cluster sum of distances is chosen
as the new medoid for that cluster. This process is performed for each cluster. New
clusters are constructed with the k new medoids and the algorithm repeats again.
The MATLAB command kmedoids performs k-medoids with a variety of different
methods depending on the number of samples. When the number of samples is less
than 3000 MATLAB implements k-medoids using the Partitioning Around Medoids
(PAM) algorithm [24].

5.3 Silhouette Value

For each sample Xj there is a corresponding silhouette value sj ∈ [−1, 1] which is
defined as follows

sj(k) ,
bj(k)− aj(k)

max{aj(k), bj(k)}
where aj is the average dissimilarity between sample j and all other samples within
its own cluster, bj is the average dissimilarity between Xj and the elements of the
nearest cluster, and k is the total number of apriori designated clusters. These two
quantities are now formally defined as follows

aj(k) ,
1

|C(j; k)| − 1

∑

Xi∈C(j;k)
i 6=j

d(Xi,Xj).

Note that we have used |C(j)| to denote the cardinality of C(j), the total number of
samples in C(j). We similarly define the bj as

bj(k) , min
Cm 6=C(j;k)

1

|Cm|
∑

Xi∈Cm
d(Xi,Xj).

For a given sample set and a given number of clusters k ≥ 2 there is a corresponding
sj(k). The Silhouette Index for a sample data set is then the maximum of the mean
silhouette value for each total number of clusters.

SI(X) , max
k

1

n

n
∑

j=1

sj(k)

The optimal number of clusters is then argmaxk
1
n

∑n
j=1 sj(k). Silhouette analysis

is performed in MATALAB using the command silhouette.
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5.4 Variance Ratio Criterion and the Caliński-Harabasz Index

We now define the Variance Ratio Criterion (VRC) which holds for any distance
function. When the Euclidian metric is used the VRC is referred to as the Caliński-
Harabasz (CH) index [4]. As before, assume that a collection of samples has already
been grouped into k clusters. The VRC is defined as

VRC(k) ,
BG(k)

WG(k)

n− k

k − 1

where BG is the Between Group variance and WG is the Within Group variance
defined below,

BG(k) ,

k
∑

j=1

1

|Cj|
∑k

m>j |Cm|
∑

Xi∈Cj

∑

Xℓ∈Cm
m>j

d(Xi,Xℓ)
2

WG(k) ,
k
∑

j=1

2

|Cj| (|Cj | − 1)

n
∑

i=1
Xi∈Cj

n
∑

ℓ>i
Xℓ∈Cj

d(Xi,Xℓ)
2.

5.5 Principle Coordinate Analysis

The purpose of Principle Coordinates Analysis (PCoA) is to represent a collection
of high dimensional data in a lower dimension. Once again assume that one has a
collection of samples X ∈ R

n×p where n is total number of samples and p is the
dimension of each sample. Let Xi ∈ R

1×p, i = 1, 2, . . . , n be the row vectors of X
as defined in (T41). The question answered in this section is how one obtains a
Y ∈ R

n×k, k ≤ n with Yi ∈ R
1×k, i = 1, 2, . . . , n defined as follows

Y =











Y1
Y2
...
Yn











that is a faithful representation of X. We begin by defining the dissimilarity between
samples i and j as δij = d(Xi,Xj). Then the goal of this method is to find Y
such that d(Yi, Yj) is similar to d(Xi,Xj) for the distance measure of interest. Let
D = −1

2(δ
2
ij)1≤i,j≤n and

B = (In×n − n−11n1
T

n)D(In×n − n−11n1
T

n).

where 1n is an n-dimensional column vector with each entry equal to 1. The n× k
dimensional representation of the n× p sample data is then [37, Chapter 5]

Y = [q1
√

λ1, q2
√

λ2, . . . , qk
√

λk].

where B = QΛQ−1 is the eigenvalue decomposition with eigenvalues λi ∈ R, and
normalized eigenvectors qi ∈ R

n for i = 1, 2, . . . , n with Q = [q1, q2, . . . , qn] and
[Λ]ii = λi the diagonal eigenvalue matrix. Due to the fact that B is symmetric all
eigenvalues and eigenvectors will be real valued. It is furthermore assumed that
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the eigenvalues are arranged such that λ1 ≥ λ2 ≥ · · · ≥ λn. When the Euclidian
distance function is used B is always positive semi-definite. However, it may be
possible to have negative eigenvalues when other distance functions are used and
thus it is necessary to check and make sure that that λi for each i ∈ {1, 2, . . . , k} is
positive for the k-dimensional space of interest. The command that performs this
task in MATLAB is cmdscale. MATLAB also rotates the data, but that has no
affect on the dissimilarity measure, as rotation is distance preserving in Euclidian
space.

5.6 Principle Component Analysis

Principle Component Analysis (PCA) is similar in spirit to PCoA in that one wishes
to represent a set of data in a lower dimension. Assume that one has a collection
of samples X ∈ R

n×p where n is total number of samples and p is the dimension of
each sample. As before the goal is to find a Y ∈ R

n×k, k ≤ p that is representative
of the original data. Assume without loss of generality that the columns of X have
mean zero. Let

X = UΣW T

be the singular value decomposition of X where Σ ∈ R
n×p is a diagonal matrix with

the singular values σi = [Σ]ii where σi ≥ σj for i < j. The columns of U ∈ R
n×n

are the left singular vectors and the columns of W ∈ R
p×p are the right singular

vectors. The reduced order representation is then defined as

Y = XW1:n,1:k

where W1:n,1:k contains only the first k columns of W . Note that W1:n,1:k can be
thought of as a right hand side projection operator and can be used to project
subsequent measurements into pre-existing principle components. Also, note that
when the Euclidean distance is used in PCoA it is equivalent to PCA. The command
that performs this task in MATLAB is pca.

6 Modeling

Two approaches for modeling individual human microbial communities are now
presented. The first model is the same as that presented in the main text and from
this point forward is referred to as the universal model. This model assumes that all
species interact in a universal manner independent of the host. The second model
allows for there to be multiple possible interaction strengths and growth rates for
species. This model will be referred to as the multiple set model. We use Figure T4
as a visual reference when discussing the modeling paradigms.

6.1 Universal Model

Consider a universal species pool indexed by a set of integers S = {1, . . . , n},
a global n× n matrix A representing all possible pairwise interactions between
species, and a universal vector r of size n containing the growth rates for all the
n species. The global variables for our ecological system are completely defined
by the triple (S,A, r). Then q Local Communities (LCs) are defined by sets S[ν],
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which are subsets of S denoting the specific microbes present in LCν , ν = 1, . . . , q.
For simplicity we assume that each LC contains only p species (p ≤ n), randomly
selected from the universal species pool. The GLV dynamics for each LC is given
by

LCν : ẋ[ν](t) = diag
(

x[ν](t)
)(

r[ν] +A[ν]x[ν](t)
)

(T42)

where the LC specific interaction matrix and growth vector are defined as A[ν] ,

AS[ν],S[ν] and r[ν] , rS[ν] , respectively. That is, A[ν] is obtained from A by only

taking the rows and columns of A that are contained in the set S[ν]. A similar

· · ·
   

· · ·
   

Universal Dynamics

Multiple Sets of Dynamics

S,A, r

S[1], A[1], r[1]

S[1], A[1], r[1]

S[2], A[2], r[2]

S[2], A[2], r[2]

S[3], A[3], r[3]

S[3], A[3], r[3]

S[q], A[q], r[q]

S[q], A[q], r[q]

LC1 LC2 LC3 LCq

LC1 LC2 LC3 LCq

S

A1, r1

A2, r2
...

Aℓ, rℓ

Supplementary Text Figure T4: Modeling Paradigms. Two different model-
ing paradigms are presented. In the universal paradigm there is a universal list of
species S, a universal interaction matrix A, containing all the pairwise interaction
strengths, and a universal growth rate vector r. Then the dynamics of each Local
Community LC is determined by the collection of species in that community. In
the multiple set paradigm the dynamics are not only determined by the collection
of species present but the dynamics are not universal and come from a collection
of possible dynamics. In the example above LC1 dynamics are derived from the
first dynamic pair (A1, r1), LC2 dynamics are derived from (A2, r2), LC3 dynam-
ics are derived from (Aℓ, rℓ), and LCq dynamics are derived from the dynamic
pair (A1, r1).
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procedure is performed in order to obtain r[ν]. Finally there is a map mν that takes
the abundances x[ν] in the index S[ν] and carries them to the universal index in S
giving the vector x[ν] = mν

(

x[ν]
)

which results in x
[ν]

S
[ν]
j

= x
[ν]
j for j = 1, . . . , p and

x
[ν]
j = 0 for j in S \S[ν]. This modeling procedure is inspired by [7]. A toy example

of how this model is used to construct a single local community is now given

Example 1. Consider a global set of 4 species and thus S = {1, 2, 3, 4}. Let

A =









−1 0.1 0.4 −0.1
0.7 −1 0 0.4
−0.1 0.7 −1 0
−0.8 −0.2 0.4 −1









and r =









0.2
0.4
0.5
0.4









.

Then, if the first local community has the species list S[1] = {1, 3, 4} then it follows
that

A[1] =





−1 0.4 −0.1
−0.1 −1 0
−0.8 0.4 −1



 and r[1] =





0.2
0.5
0.4



 .

6.2 Mutiple Set Model

As before there is a universal set of species S = {1, . . . , n}, but now there are ℓ
pairs of possible global dynamics {(A1, r1), (A2, r2), . . . , (Aℓ, rℓ)}. The q LCs are
defined by sets S[ν], ν = 1, . . . , q and a map w : {1, 2, . . . , q} → {1, 2, . . . , ℓ} which
determines which model pair the LC is derived from. The GLV dynamics for each
LC are given by (T42) where A[ν] , [Aw(ν)]S[ν],S[ν] and r[ν] , [rw(ν)]S[ν], respectively.

That is, A[ν] is obtained from Aw(ν) by only taking the rows and columns of Aw(ν)

that are contained in the set S[ν]. A similar procedure is performed in order to obtain
r[ν]. The map mν that takes the abundances x[ν] in the index S[ν] and carries them
to the universal index S is defined as before x[ν] = mν(x

[ν]). It is worth noting that
results from this modeling paradigm are not presented in the main text, because
the emergence of community types in this case is trivial (see §7.1) [26].

7 Simulation Results and Analysis

We are finally in a position to address the main topic of this work. Revealing
properties that allow for community types to arise. Four case studies are now
presented. The first case study will use the multiple set model paradigm in Seciton
6.2, and it will be shown that under this paradigm that clustering of the steady states
occurs trivially. The subsequent three case studies use the universal model from
Section 6.1. The case studies explore heterogeneity (in terms of interaction strength
and network topology), mean degree of the network, and community overlap and
how these affect the existence of community types for our dynamics of interest.

7.1 Multiple Set Models

For the multiple set model study three universal pairs {(A1, r1), (A2, r2), (A3, r3)}
were considered. For this study there was a total of 100 global species. Each Ai
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was a 100 by 100 matrix with values drawn from a normal distribution with mean 0
and variance 0.0049. Then the diagonal elements of each matrix are set to -1, that
is [Ai]jj = −1, i = 1, 2, 3, j = 1, 2, . . . , 100. Note that with the above selection, the
variance of the off diagonal elements ofAi satisfy the following bound 0.0049 < 1

2·100 ,
which from Corollary 18 is the sufficient condition on the variance for asymptotic
almost sure diagonal stability when n = 100. Also, note the interaction network is
implicitly a complete graph without any structural heterogeneity. Finally, each ri
had elements drawn from a uniform distribution between 0 and 1.

From the three pairs above 600 local communities were constructed, 200 from
each universal pair. Each of the local communities contained 80 species. The dynam-
ics were then simulated for 100 seconds with initial conditions drawn from U(0, 1).
The abundances of the species in the communities were then normalized, and the
relative abundances of the 600 local communities were clustered using k-medoids
from Section 5.2 and silhouette indexed as defined in Section 5.3, each using the
Jensen-Shannon metric in (T40). A principle coordinate plot of the results is given
in Figure T5 with the elements colored according to cluster assignment from k-
medoids. It is clear that there are three clusters. Furthermore each cluster exactly
coincides with the universal Ai that the local community dynamics were obtained
from.

7.2 Universal Model

For the three universal case studies the global interaction matrix is defined as

A = NH ◦Gs,
which contains four components.
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Supplementary Text Figure T5: Principle coordinates for multiple model
case study.



. SUPPLEMENTARY TEXT 33

(i) N ∈ R
n×n is the nominal component where each element is sampled from

either a normal distribution or a uniform distribution.

(ii) The matrix H is a diagonal matrix that captures the overall interaction het-
erogeneity of different species. When interaction strength heterogeneity is
employed the diagonal elements of H are drawn from a power-law distribution
(T3) with exponent −α, [H]ii ∼ P(α), which are subsequently normalized so
that the mean of the diagonal is equal to 1. Without interaction heterogeneity
H is simply the identity matrix.

(iii) The matrix G is the adjacency matrix of the underlying ecological network:
[G]ij = 1 if species i is affected by the presence of species j and 0 otherwise.
When the underlying network is a complete digraph all elements in G are
equal to 1. For details on the construction of G when the underlying network
is Erdős-Rényi or a power-law digraph see Sections 3.2.1 and 3.2.2 respectively.

(iv) The last element s is simply a scaling factor between 0 and 1.

As before we set [A]ii = −1 to ensure one of the necessary conditions for diagonal
stability of a matrix is satisfied (Theorem 10 and Corollary 11). Finally, the elements
in the global growth rate vector are defined as

r = h ◦ n

where n is the nominal component taken from a uniform distribution, and h captures
the growth rate heterogeneity. When there is growth rate heterogeneity h is drawn
from a power-law distribution with exponent −α and subsequently normalized to
have a mean of 1. Without growth rate heterogeneity h is simply a column vector of
ones. Note that h is not included in the main text, and is only used in one scenario
of one case study within this section.

7.2.1 Universal Model: Heterogeneity Study

Next is a systematic study of heterogeneity and its effects on the dynamics in the
universal model. Eight different scenarios were tested in this study. For each of the
following scenarios the number of global species is n = 100. Table T1 outlines the
differences between the scenarios.

Scenario 1. [N]ij ∼ U(−0.5, 0.5), [H]ii ∼ P(α) where α ∈ [1.2, 7] and subse-
quently normalized to have a mean of 1, G is the adjacency matrix
for a complete digraph and thus all entries are equal to 1, and the
scaling factor is set to s = 0.07. There is no growth rate heterogene-
ity and thus the column vector h is all ones and finally [n]i ∼ U(0, 1).

Scenario 2. The same as Scenario 1 but with [N]ij ∼ N (0, 1) and s = 0.07.

Scenario 3. [N]ij ∼ U(−0.5, 0.5), [H]ii ∼ P(α) where α ∈ [1.2, 7] and subse-
quently normalized to have a mean of 1, G is the adjacency matrix
for an Erdős-Rényi digraph with a mean out-degree of 10, and the
scaling factor is set to s = 0.5. There is no growth rate heterogeneity
and thus the column vector h is all ones and finally [n]i ∼ U(0, 1).
For more details on Erdős-Rényi digraphs see §3.2.1.
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Scenario 4. The same as Scenario 3 but with [N]ij ∼ N (0, 1) and s = 0.1.

Scenario 5. [N]ij ∼ N (0, 1), H is the identity matrix, G is the adjacency matrix
for a digraph with the out-degree drawn from a power-law distribu-
tion P(α) with a mean out-degree of 10 where α ∈ [1.2, 7], and the
scaling factor is set to s = 0.2. There is no growth rate heterogene-
ity and thus the column vector h is all ones and [n]i ∼ U(0, 1). For
more details on power-law out-degree digraphs see §3.2.2.

Scenario 6. [N]ij ∼ N (0, 1), [H]ii ∼ P(α) where α ∈ [1.2, 7] and subsequently
normalized to have a mean of 1, G is the adjacency matrix for a
digraph with the out-degree drawn from a power-law distribution
P(α) with a mean out-degree of 10 where α ∈ [1.2, 7], and the scal-
ing factor is set to s = 0.1. The power-law degree distribution
and interaction strength heterogeneity are uncoupled. There is no
growth rate heterogeneity and thus the column vector h is all ones
and [n]i ∼ U(0, 1). For more details on power-law out-degree di-
graphs see §3.2.2.

Scenario 7. [N]ij ∼ N (0, 1), [H]ii ∼ P(α) where α ∈ [1.2, 7] and subsequently
normalized to have a mean of 1, G is the adjacency matrix for a di-
graph with the out-degree drawn from a power-law distribution P(α)
with a mean out-degree of 10 where α ∈ [1.2, 7], and the scaling fac-
tor is set to s = 0.02(α+1). The power-law degree distribution and
interaction strength heterogeneity are coupled so that the node with
the highest out-degree is also the node with the largest interaction
strength scaling. There is no growth rate heterogeneity and thus the
column vector h is all ones and [n]i ∼ U(0, 1). For more details on
power-law out-degree digraphs see §3.2.2.

Scenario 8. [N]ij ∼ N (0, 1), H is the identity matrix, G is the adjacency matrix
for an Erdős-Rényi digraph with a mean out-degree of 10, and the
scaling factor is set to s = 0.1. There is growth rate heterogeneity
and thus the column vector h has elements drawn from a power-law
distribution P(α) and subsequently normalized to have a mean of
1 and [n]i ∼ U(0, 1). For more details on Erdős-Rényi digraphs see
§3.2.1.

For each of the eight scenarios above and for every α, q = 500 local communities
were generated each with p = 80 species selected at random from the n = 100
global species. The dynamics as described above following the modeling paradigm
in Section 6.1 were then simulated for 100 seconds with initial conditions drawn from
U(0, 1). If any of the 500 simulations crashed due to instability or if the norm of the
terminal discrete time derivative was greater than 0.01 then that local community
was excluded from the rest of the study. Those simulations that finished without
crashing and with small terminal discrete time derivative were deemed steady. Less
than 1% of simulations were deemed unstable. The abundances of the species in
the communities were then normalized, and the relative abundances of the 500 local
communities were clustered using k-medoids from Section 5.2 and silhouette indexed
as defined in Section 5.3, each using the Jensen-Shannon distance metric in (T40).
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The results from the above scenarios are presented in Figures T6-T13. The first
plot is a comprehensive clustering analysis of the steady state values obtained from
the simulations. The x-axis denotes the heterogeneity value α. The box plots are
the silhouette values pertaining to the number of clusters for which the silhouette
index was defined. The total number of clusters pertaining to the silhouette index
is denoted on the top x-axis. The second row is a principle coordinate analysis of
the steady state values obtained at three different heterogeneity values. Clusters are
color coded to match the optimal clustering from k-medoids. The third row of the
figure plots

max
i,j

real
(

λi(A
[j])
)

as a function of α. The fourth row is a plot of λi(A
[j]) for i ∈ {1, 2, . . . , 80} and

j ∈ {1, 2, . . . , 500} at three values of α.
Figures T6 and T7 show that regardless of whether the nominal component is

drawn from a uniform or a normal distribution the increase in interaction strength
heterogeneity (decreasing α) leads to steady state clustering in the data. Figures T8
and T9 illustrate that the same phenomenon also holds for Erdős-Rényi digraphs as
well. When the underlying graph topology follows a power-law degree distribution,
but there is no interaction strength heterogeneity, clustering of steady states is
not observed, see Figure T10. Figure T11 illustrates the fact that when there is
interaction strength heterogeneity and network degree heterogeneity it is possible to
have clustering of steady states when α is in the range [3, 1]. However the trend is
not smooth and is inconsistent, as compared to Figures T6-T9. This is due to the
fact that when the underlying interaction network is being constructed, there is no
guarantee that the high-degree node will also have a large interaction strength. For
instance, if a node with no out edges is randomly selected to have high interaction
strength scaling, then the impact of that node on the rest of the nodes is still zero.
When the interaction strength heterogeneity is coupled with the out-degree for a
power-law out-degree digraph then the trends from Figures T6-T9 are recovered.
Finally, if the growth rates of the species are derived from a power-law distribution,
then clustering of steady states also occurs as α decreases.

Rows three and four illustrate the spectrum of A[j], and are included so that we
can infer the asymptotic stability of the system for certain paradigms. Note that
regardless of whether the nominal interactions are drawn from a normal distribution
or a uniform distribution when α is large the spectrum represents a uniform disk
in the complex plain as predicted by Theorem 1. Furthermore, for scenario 2 with
s = 0.07 and [N]ij ∼ N (0, 1) it follows that Var[A]ij <

1√
2n

for n = 100. From

Theorem 17 it follows that A is diagonally stable, in a probabilistic sense. Then
invoking Theorem 10 we know that any principle minor of A is diagonally stable
as well. Therefore, in Scenario 2 for large α each A[j] is diagonally stable, in a
probabilistic sense.

Also, for all of the scenarios with interaction heterogeneity all of the eigenvalues
of A, and consequently A[j], converge to −1 as α tends to 1. In the limit of α
tending to 1, only one of the columns of A has non-zero values off the diagonal.
Therefore, in the limit of α tending to 1 the following inequality holdsATP+PA < 0
where P = [1, ǫ, . . . , ǫ]T and ǫ is sufficiently small.5 Thus A is diagonally stable in

5Without loss of generality we have assumed that the first column of A is the highly weighted
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the limit of α tending to 1. Therefore, for low interaction strength heterogeneity
and for high interaction strength heterogeneity one of the necessary conditions for
uniform asymptotic stability in the positive orthant is satisfied, see Theorem 5. Note
that even when the A[j] are not diagonally stable it does not imply that the state
trajectory x[j](t) is unstable.

7.2.2 Universal Model: Sparsity Study

Next is a study where the mean degree of the Erdős-Rényi digraph along with
the interaction strength heterogeneity is varied. Table T2 outlines the differences
between the scenarios. The details of the study are as follows: [N]ij ∼ U(−0.5, 0.5),
[H]ii ∼ P(α) where α ∈ [1.2, 7] and subsequently normalized to have a mean of 1,
G is the adjacency matrix for an Erdős-Rényi digraph with a mean out-degree of

d ∈ {1, 3, 5, 7, 9, 11, 13, 15, 17, 19},

and the scaling factor is set to s = 1/
√
d. There is no growth heterogeneity and

thus the column vector h is all ones and finally [n]i ∼ U(0, 1). For each of the ten
scenarios above and for every α the same procedure as in §7.2.1 was carried out and
the results are shown in Figures T14-T23.

From Figures T14-T23 it can be concluded that so long as the mean out-degree
of the ER digraph is greater than 2 the steady states of the GLV model increase
in SI as α decreases. That is, the same trends as observed in the previous study
hold, so long as the ER digraph is connected. When the mean degree is 1 for an ER
graph it is very unlikely that the graph will be connected [13]. Thus for a digraph
with mean out-degree 1, it is even more unlikely that it will be connected. When
the underlying digraph G has many isolated nodes then the scaling of interaction
strengths does not influence as many other species in the GLV system and thus
clustering is not observed.

7.2.3 Universal Model: Community Size Study

In all previous studies each local community contained 80 species. For this study
the size of the local communities take on values in the following set

p ∈ {100, 99, 95, 90, 80, 70, 60, 50}.

Details of the study are as follows: [N]ij ∼ U(−0.5, 0.5), [H]ii ∼ P(α) where α ∈
[1.2, 7] and subsequently normalized to have a mean of 1, G is the adjacency matrix
for an Erdős-Rényi digraph with a mean out-degree of 10, and the scaling factor is
set to s = 0.5. There is no growth heterogeneity and thus the column vector h is
all ones and finally [n]i ∼ U(0, 1). Table T3 outlines the differences between the
scenarios. For each of the eight scenarios above and for every α the same procedure
as in §7.2.1 was carried out and the results are shown in Figures T24-T31.

These results show that the trends observed in the earlier studies still hold when
the community sizes are varied between 95 and 50 species, Figures T26-T31. As
the community sizes approach 50 the trend of increased clustering with increased
heterogeneity is less significant. When the number of species in the LCs approaches

column.



. SUPPLEMENTARY TEXT 37

the number of species in the meta-community, 100, the results do not follow the
same trends as before and the Silhouette Indices are near 1, independent of the
interaction strength heterogeneity. In Figure T24 all the simulations are identical,
each LC has the same 100 species but with different initial conditions. Due to
asymptotic stability all of the simulations converge to the same steady state (only
those simulations for α between 2.2 and 3 have the potential to be unstable). Even
though the Silhouette Indices are near 1 across the heterogeneity spectrum, all of
the steady state values are within 10−3 to 10−2 in terms of the first two principle
coordinates. When all of the LCs differ by only one species, Figure T25, once again
the Silhouette Indices are near 1, yet the PCoA illustrates that most of the samples
are very close together with just a few outliers. Figures T24 and T25 illustrate the
sometimes confounding results when clustering analysis and PCoA are performed
[20,32].
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Table T1: Parameter settings for heterogeneity case study.

Scenario
Growth Rate
Distribution

Nominal Interaction
Distribution

Interaction
Structure

Mean
Degree

Interaction Strength
Heterogeneity

Network Structure
Heterogeneity

Growth Rate
Heterogeneity

1 uniform uniform complete 100 α ∈ [1.2, 7] none none
2 uniform normal complete 100 α ∈ [1.2, 7] none none
3 uniform uniform Erdős-Rényi 10 α ∈ [1.2, 7] none none
4 uniform normal Erdős-Rényi 10 α ∈ [1.2, 7] none none
5 uniform normal power-law 10 none α ∈ [1.2, 7] none
6 uniform normal power-law 10 α ∈ [1.2, 7] α ∈ [1.2, 7] none
7 uniform normal power-law 10 α ∈ [1.2, 7] α ∈ [1.2, 7](coupled) none
8 uniform normal Erdős-Rényi 100 none none α ∈ [1.2, 7]
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Table T2: Parameter settings for sparsity study.

Scenario
Growth Rate
Distribution

Nominal Interaction
Distribution

Interaction
Structure

Mean
Degree

Interaction Strength
Heterogeneity

Network Structure
Heterogeneity

Growth Rate
Heterogeneity

1 uniform uniform Erdős-Rényi 1 α ∈ [1.2, 7] none none
2 uniform uniform Erdős-Rényi 3 α ∈ [1.2, 7] none none
3 uniform uniform Erdős-Rényi 5 α ∈ [1.2, 7] none none
4 uniform uniform Erdős-Rényi 7 α ∈ [1.2, 7] none none
5 uniform uniform Erdős-Rényi 9 α ∈ [1.2, 7] none none
6 uniform uniform Erdős-Rényi 11 α ∈ [1.2, 7] none none
7 uniform uniform Erdős-Rényi 13 α ∈ [1.2, 7] none none
8 uniform uniform Erdős-Rényi 15 α ∈ [1.2, 7] none none
9 uniform uniform Erdős-Rényi 17 α ∈ [1.2, 7] none none
10 uniform uniform Erdős-Rényi 19 α ∈ [1.2, 7] none none
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Table T3: Parameter settings for community size study.

Scenario
Growth Rate
Distribution

Nominal Interaction
Distribution

Interaction
Structure

Mean
Degree

Interaction Strength
Heterogeneity

Network/Growth
Heterogeneity

Community
Size

1 uniform uniform Erdős-Rényi 10 α ∈ [1.2, 7] none 100
2 uniform uniform Erdős-Rényi 10 α ∈ [1.2, 7] none 99
3 uniform uniform Erdős-Rényi 10 α ∈ [1.2, 7] none 95
4 uniform uniform Erdős-Rényi 10 α ∈ [1.2, 7] none 90
5 uniform uniform Erdős-Rényi 10 α ∈ [1.2, 7] none 80
6 uniform uniform Erdős-Rényi 10 α ∈ [1.2, 7] none 70
7 uniform uniform Erdős-Rényi 10 α ∈ [1.2, 7] none 60
8 uniform uniform Erdős-Rényi 10 α ∈ [1.2, 7] none 50
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Supplementary Text Figure T6: Universal Model Heterogeneity Study Sce-
nario 1 in Table T1. The first plot is a comprehensive clustering analysis of the
steady state values obtained from the Lotka-Volterra simulations. The x-axis
denotes the heterogeneity value α. The box plots are the silhouette values per-
taining to the number of clusters for which the silhouette index (maximum over
the number of clusters of the mean silhouette value for each given total number
of cluster) was defined. The total number of clusters pertaining to the silhouette
index is denoted on the top x-axis. The second row is a principle coordinate anal-
ysis of the steady state values obtained at three different heterogeneity values.
Clusters are color coded to match the optimal clustering from k-medoids. The
third row of the figure plots maxi,j real(λi(A

[j])) as a function of α. The fourth
row is a plot of λi(A

[j])for i ∈ {1, 2, . . . , 80} and j ∈ {1, 2, . . . , 500} at three values
of α.
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Supplementary Text Figure T7: Universal Model Heterogeneity Study Sce-
nario 2 in Table T1. The first plot is a comprehensive clustering analysis of the
steady state values obtained from the Lotka-Volterra simulations. The x-axis
denotes the heterogeneity value α. The box plots are the silhouette values per-
taining to the number of clusters for which the silhouette index (maximum over
the number of clusters of the mean silhouette value for each given total number
of cluster) was defined. The total number of clusters pertaining to the silhouette
index is denoted on the top x-axis. The second row is a principle coordinate anal-
ysis of the steady state values obtained at three different heterogeneity values.
Clusters are color coded to match the optimal clustering from k-medoids. The
third row of the figure plots maxi,j real(λi(A

[j])) as a function of α. The fourth
row is a plot of λi(A

[j])for i ∈ {1, 2, . . . , 80} and j ∈ {1, 2, . . . , 500} at three values
of α.
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Supplementary Text Figure T8: Universal Model Heterogeneity Study Sce-
nario 3 in Table T1. The first plot is a comprehensive clustering analysis of the
steady state values obtained from the Lotka-Volterra simulations. The x-axis
denotes the heterogeneity value α. The box plots are the silhouette values per-
taining to the number of clusters for which the silhouette index (maximum over
the number of clusters of the mean silhouette value for each given total number
of cluster) was defined. The total number of clusters pertaining to the silhouette
index is denoted on the top x-axis. The second row is a principle coordinate anal-
ysis of the steady state values obtained at three different heterogeneity values.
Clusters are color coded to match the optimal clustering from k-medoids. The
third row of the figure plots maxi,j real(λi(A

[j])) as a function of α. The fourth
row is a plot of λi(A

[j])for i ∈ {1, 2, . . . , 80} and j ∈ {1, 2, . . . , 500} at three values
of α.
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Supplementary Text Figure T9: Universal Model Heterogeneity Study Sce-
nario 4 in Table T1. The first plot is a comprehensive clustering analysis of the
steady state values obtained from the Lotka-Volterra simulations. The x-axis
denotes the heterogeneity value α. The box plots are the silhouette values per-
taining to the number of clusters for which the silhouette index (maximum over
the number of clusters of the mean silhouette value for each given total number
of cluster) was defined. The total number of clusters pertaining to the silhouette
index is denoted on the top x-axis. The second row is a principle coordinate anal-
ysis of the steady state values obtained at three different heterogeneity values.
Clusters are color coded to match the optimal clustering from k-medoids. The
third row of the figure plots maxi,j real(λi(A

[j])) as a function of α. The fourth
row is a plot of λi(A

[j])for i ∈ {1, 2, . . . , 80} and j ∈ {1, 2, . . . , 500} at three values
of α.
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Supplementary Text Figure T10: Universal Model Heterogeneity Study Sce-
nario 5 in Table T1. The first plot is a comprehensive clustering analysis of the
steady state values obtained from the Lotka-Volterra simulations. The x-axis
denotes the heterogeneity value α. The box plots are the silhouette values per-
taining to the number of clusters for which the silhouette index (maximum over
the number of clusters of the mean silhouette value for each given total number
of cluster) was defined. The total number of clusters pertaining to the silhouette
index is denoted on the top x-axis. The second row is a principle coordinate anal-
ysis of the steady state values obtained at three different heterogeneity values.
Clusters are color coded to match the optimal clustering from k-medoids. The
third row of the figure plots maxi,j real(λi(A

[j])) as a function of α. The fourth
row is a plot of λi(A

[j])for i ∈ {1, 2, . . . , 80} and j ∈ {1, 2, . . . , 500} at three values
of α.



. SUPPLEMENTARY TEXT 46

α

7 6.8 6.6 6.4 6.2 6 5.8 5.6 5.4 5.2 5 4.8 4.6 4.4 4.2 4 3.8 3.6 3.4 3.2 3 2.8 2.6 2.4 2.2 2 1.8 1.6 1.4 1.2

S
il
h
ou

et
te

V
al
u
es

0

0.2

0.4

0.6

0.8

1

Number of Clusters

2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 6 4 3 5 2 2 2 4 2 3 2 2

α=7, clusters=2, SI=0.022

Principal Component 1

-0.5 0 0.5

P
ri
n
ci
p
al

C
om

p
on

en
t
2

-0.4

-0.2

0

0.2

0.4
α=2.6, clusters=2, SI=0.46

Principal Component 1

-0.5 0 0.5 1

P
ri
n
ci
p
al

C
om

p
on

en
t
2

-0.4

-0.2

0

0.2

0.4

0.6
α=1.2, clusters=2, SI=0.019

Principal Component 1

-0.5 0 0.5

P
ri
n
ci
p
al

C
om

p
on

en
t
2

-0.4

-0.2

0

0.2

0.4

α

7 6.8 6.6 6.4 6.2 6 5.8 5.6 5.4 5.2 5 4.8 4.6 4.4 4.2 4 3.8 3.6 3.4 3.2 3 2.8 2.6 2.4 2.2 2 1.8 1.6 1.4 1.2

m
ax

i
re
a
l(
λ
i)

-1

-0.8

-0.6

-0.4

-0.2

0

α=7

Real

-2 -1 0

Im
ag

in
ar
y

-1

-0.5

0

0.5

1
α=2.6

Real

-2 -1 0

Im
ag

in
ar
y

-1

-0.5

0

0.5

1
α=1.2

Real

-2 -1 0

Im
ag

in
ar
y

-1

-0.5

0

0.5

1

Supplementary Text Figure T11: Universal Model Heterogeneity Study Sce-
nario 6 in Table T1. The first plot is a comprehensive clustering analysis of the
steady state values obtained from the Lotka-Volterra simulations. The x-axis
denotes the heterogeneity value α. The box plots are the silhouette values per-
taining to the number of clusters for which the silhouette index (maximum over
the number of clusters of the mean silhouette value for each given total number
of cluster) was defined. The total number of clusters pertaining to the silhouette
index is denoted on the top x-axis. The second row is a principle coordinate anal-
ysis of the steady state values obtained at three different heterogeneity values.
Clusters are color coded to match the optimal clustering from k-medoids. The
third row of the figure plots maxi,j real(λi(A

[j])) as a function of α. The fourth
row is a plot of λi(A

[j])for i ∈ {1, 2, . . . , 80} and j ∈ {1, 2, . . . , 500} at three values
of α.
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Supplementary Text Figure T12: Universal Model Heterogeneity Study Sce-
nario 7 in Table T1. The first plot is a comprehensive clustering analysis of the
steady state values obtained from the Lotka-Volterra simulations. The x-axis
denotes the heterogeneity value α. The box plots are the silhouette values per-
taining to the number of clusters for which the silhouette index (maximum over
the number of clusters of the mean silhouette value for each given total number
of cluster) was defined. The total number of clusters pertaining to the silhouette
index is denoted on the top x-axis. The second row is a principle coordinate anal-
ysis of the steady state values obtained at three different heterogeneity values.
Clusters are color coded to match the optimal clustering from k-medoids. The
third row of the figure plots maxi,j real(λi(A

[j])) as a function of α. The fourth
row is a plot of λi(A

[j])for i ∈ {1, 2, . . . , 80} and j ∈ {1, 2, . . . , 500} at three values
of α.
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Supplementary Text Figure T13: Universal Model Heterogeneity Study Sce-
nario 8 in Table T1. The first plot is a comprehensive clustering analysis of the
steady state values obtained from the Lotka-Volterra simulations. The x-axis
denotes the heterogeneity value α. The box plots are the silhouette values per-
taining to the number of clusters for which the silhouette index (maximum over
the number of clusters of the mean silhouette value for each given total number
of cluster) was defined. The total number of clusters pertaining to the silhouette
index is denoted on the top x-axis. The second row is a principle coordinate anal-
ysis of the steady state values obtained at three different heterogeneity values.
Clusters are color coded to match the optimal clustering from k-medoids. The
third row of the figure plots maxi,j real(λi(A

[j])) as a function of α. The fourth
row is a plot of λi(A

[j])for i ∈ {1, 2, . . . , 80} and j ∈ {1, 2, . . . , 500} at three values
of α.
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Supplementary Text Figure T14: Universal Model Sparsity Study Scenario
1 in Table T2. The first plot is a comprehensive clustering analysis of the steady
state values obtained from the Lotka-Volterra simulations. The x-axis denotes
the heterogeneity value α. The box plots are the silhouette values pertaining to
the number of clusters for which the silhouette index (maximum over the number
of clusters of the mean silhouette value for each given total number of cluster)
was defined. The total number of clusters pertaining to the silhouette index is
denoted on the top x-axis. The second row is a principle coordinate analysis of
the steady state values obtained at three different heterogeneity values. Clusters
are color coded to match the optimal clustering from k-medoids. The third row
of the figure plots maxi,j real(λi(A

[j])) as a function of α. The fourth row is a
plot of λi(A

[j]) for i ∈ {1, 2, . . . , 80} and j ∈ {1, 2, . . . , 500} at three values of α.
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Supplementary Text Figure T15: Universal Model Sparsity Study Scenario
2 in Table T2. The first plot is a comprehensive clustering analysis of the steady
state values obtained from the Lotka-Volterra simulations. The x-axis denotes
the heterogeneity value α. The box plots are the silhouette values pertaining to
the number of clusters for which the silhouette index (maximum over the number
of clusters of the mean silhouette value for each given total number of cluster)
was defined. The total number of clusters pertaining to the silhouette index is
denoted on the top x-axis. The second row is a principle coordinate analysis of
the steady state values obtained at three different heterogeneity values. Clusters
are color coded to match the optimal clustering from k-medoids. The third row
of the figure plots maxi,j real(λi(A

[j])) as a function of α. The fourth row is a
plot of λi(A

[j]) for i ∈ {1, 2, . . . , 80} and j ∈ {1, 2, . . . , 500} at three values of α.
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Supplementary Text Figure T16: Universal Model Sparsity Study Scenario
3 in Table T2. The first plot is a comprehensive clustering analysis of the steady
state values obtained from the Lotka-Volterra simulations. The x-axis denotes
the heterogeneity value α. The box plots are the silhouette values pertaining to
the number of clusters for which the silhouette index (maximum over the number
of clusters of the mean silhouette value for each given total number of cluster)
was defined. The total number of clusters pertaining to the silhouette index is
denoted on the top x-axis. The second row is a principle coordinate analysis of
the steady state values obtained at three different heterogeneity values. Clusters
are color coded to match the optimal clustering from k-medoids. The third row
of the figure plots maxi,j real(λi(A

[j])) as a function of α. The fourth row is a
plot of λi(A

[j]) for i ∈ {1, 2, . . . , 80} and j ∈ {1, 2, . . . , 500} at three values of α.
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Supplementary Text Figure T17: Universal Model Sparsity Study Scenario
4 in Table T2. The first plot is a comprehensive clustering analysis of the steady
state values obtained from the Lotka-Volterra simulations. The x-axis denotes
the heterogeneity value α. The box plots are the silhouette values pertaining to
the number of clusters for which the silhouette index (maximum over the number
of clusters of the mean silhouette value for each given total number of cluster)
was defined. The total number of clusters pertaining to the silhouette index is
denoted on the top x-axis. The second row is a principle coordinate analysis of
the steady state values obtained at three different heterogeneity values. Clusters
are color coded to match the optimal clustering from k-medoids. The third row
of the figure plots maxi,j real(λi(A

[j])) as a function of α. The fourth row is a
plot of λi(A

[j]) for i ∈ {1, 2, . . . , 80} and j ∈ {1, 2, . . . , 500} at three values of α.
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Supplementary Text Figure T18: Universal Model Sparsity Study Scenario
5 in Table T2. The first plot is a comprehensive clustering analysis of the steady
state values obtained from the Lotka-Volterra simulations. The x-axis denotes
the heterogeneity value α. The box plots are the silhouette values pertaining to
the number of clusters for which the silhouette index (maximum over the number
of clusters of the mean silhouette value for each given total number of cluster)
was defined. The total number of clusters pertaining to the silhouette index is
denoted on the top x-axis. The second row is a principle coordinate analysis of
the steady state values obtained at three different heterogeneity values. Clusters
are color coded to match the optimal clustering from k-medoids. The third row
of the figure plots maxi,j real(λi(A

[j])) as a function of α. The fourth row is a
plot of λi(A

[j]) for i ∈ {1, 2, . . . , 80} and j ∈ {1, 2, . . . , 500} at three values of α.
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Supplementary Text Figure T19: Universal Model Sparsity Study Scenario
6 in Table T2. The first plot is a comprehensive clustering analysis of the steady
state values obtained from the Lotka-Volterra simulations. The x-axis denotes
the heterogeneity value α. The box plots are the silhouette values pertaining to
the number of clusters for which the silhouette index (maximum over the number
of clusters of the mean silhouette value for each given total number of cluster)
was defined. The total number of clusters pertaining to the silhouette index is
denoted on the top x-axis. The second row is a principle coordinate analysis of
the steady state values obtained at three different heterogeneity values. Clusters
are color coded to match the optimal clustering from k-medoids. The third row
of the figure plots maxi,j real(λi(A

[j])) as a function of α. The fourth row is a
plot of λi(A

[j]) for i ∈ {1, 2, . . . , 80} and j ∈ {1, 2, . . . , 500} at three values of α.
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Supplementary Text Figure T20: Universal Model Sparsity Study Scenario
7 in Table T2. The first plot is a comprehensive clustering analysis of the steady
state values obtained from the Lotka-Volterra simulations. The x-axis denotes
the heterogeneity value α. The box plots are the silhouette values pertaining to
the number of clusters for which the silhouette index (maximum over the number
of clusters of the mean silhouette value for each given total number of cluster)
was defined. The total number of clusters pertaining to the silhouette index is
denoted on the top x-axis. The second row is a principle coordinate analysis of
the steady state values obtained at three different heterogeneity values. Clusters
are color coded to match the optimal clustering from k-medoids. The third row
of the figure plots maxi,j real(λi(A

[j])) as a function of α. The fourth row is a
plot of λi(A

[j]) for i ∈ {1, 2, . . . , 80} and j ∈ {1, 2, . . . , 500} at three values of α.
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Supplementary Text Figure T21: Universal Model Sparsity Study Scenario
8 in Table T2. The first plot is a comprehensive clustering analysis of the steady
state values obtained from the Lotka-Volterra simulations. The x-axis denotes
the heterogeneity value α. The box plots are the silhouette values pertaining to
the number of clusters for which the silhouette index (maximum over the number
of clusters of the mean silhouette value for each given total number of cluster)
was defined. The total number of clusters pertaining to the silhouette index is
denoted on the top x-axis. The second row is a principle coordinate analysis of
the steady state values obtained at three different heterogeneity values. Clusters
are color coded to match the optimal clustering from k-medoids. The third row
of the figure plots maxi,j real(λi(A

[j])) as a function of α. The fourth row is a
plot of λi(A

[j]) for i ∈ {1, 2, . . . , 80} and j ∈ {1, 2, . . . , 500} at three values of α.
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Supplementary Text Figure T22: Universal Model Sparsity Study Scenario
9 in Table T2. The first plot is a comprehensive clustering analysis of the steady
state values obtained from the Lotka-Volterra simulations. The x-axis denotes
the heterogeneity value α. The box plots are the silhouette values pertaining to
the number of clusters for which the silhouette index (maximum over the number
of clusters of the mean silhouette value for each given total number of cluster)
was defined. The total number of clusters pertaining to the silhouette index is
denoted on the top x-axis. The second row is a principle coordinate analysis of
the steady state values obtained at three different heterogeneity values. Clusters
are color coded to match the optimal clustering from k-medoids. The third row
of the figure plots maxi,j real(λi(A

[j])) as a function of α. The fourth row is a
plot of λi(A

[j]) for i ∈ {1, 2, . . . , 80} and j ∈ {1, 2, . . . , 500} at three values of α.
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Supplementary Text Figure T23: Universal Model Sparsity Study Scenario
10 in Table T2. The first plot is a comprehensive clustering analysis of the steady
state values obtained from the Lotka-Volterra simulations. The x-axis denotes
the heterogeneity value α. The box plots are the silhouette values pertaining to
the number of clusters for which the silhouette index (maximum over the number
of clusters of the mean silhouette value for each given total number of cluster)
was defined. The total number of clusters pertaining to the silhouette index is
denoted on the top x-axis. The second row is a principle coordinate analysis of
the steady state values obtained at three different heterogeneity values. Clusters
are color coded to match the optimal clustering from k-medoids. The third row
of the figure plots maxi,j real(λi(A

[j])) as a function of α. The fourth row is a
plot of λi(A

[j]) for i ∈ {1, 2, . . . , 80} and j ∈ {1, 2, . . . , 500} at three values of α.
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Supplementary Text Figure T24: Universal Model Community Size Overlap
Study Scenario 1 in Table T3. The first plot is a comprehensive clustering analysis
of the steady state values obtained from the Lotka-Volterra simulations. The x-
axis denotes the heterogeneity value α. The box plots are the silhouette values
pertaining to the number of clusters for which the silhouette index (maximum over
the number of clusters of the mean silhouette value for each given total number
of cluster) was defined. The total number of clusters pertaining to the silhouette
index is denoted on the top x-axis. The second row is a principle coordinate
analysis of the steady state values obtained at three different heterogeneity values.
Clusters are color coded to match the optimal clustering from k-medoids. The
third row of the figure plots maxi,j real(λi(A

[j])) as a function of α. The fourth
row is a plot of λi(A

[j]) for i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , 500} at three values
of α.
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Supplementary Text Figure T25: Universal Model Community Size Overlap
Study Scenario 2 in Table T3. The first plot is a comprehensive clustering analysis
of the steady state values obtained from the Lotka-Volterra simulations. The x-
axis denotes the heterogeneity value α. The box plots are the silhouette values
pertaining to the number of clusters for which the silhouette index (maximum over
the number of clusters of the mean silhouette value for each given total number
of cluster) was defined. The total number of clusters pertaining to the silhouette
index is denoted on the top x-axis. The second row is a principle coordinate
analysis of the steady state values obtained at three different heterogeneity values.
Clusters are color coded to match the optimal clustering from k-medoids. The
third row of the figure plots maxi,j real(λi(A

[j])) as a function of α. The fourth
row is a plot of λi(A

[j]) for i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , 500} at three values
of α.
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Supplementary Text Figure T26: Universal Model Community Size Overlap
Study Scenario 3 in Table T3. The first plot is a comprehensive clustering analysis
of the steady state values obtained from the Lotka-Volterra simulations. The x-
axis denotes the heterogeneity value α. The box plots are the silhouette values
pertaining to the number of clusters for which the silhouette index (maximum over
the number of clusters of the mean silhouette value for each given total number
of cluster) was defined. The total number of clusters pertaining to the silhouette
index is denoted on the top x-axis. The second row is a principle coordinate
analysis of the steady state values obtained at three different heterogeneity values.
Clusters are color coded to match the optimal clustering from k-medoids. The
third row of the figure plots maxi,j real(λi(A

[j])) as a function of α. The fourth
row is a plot of λi(A

[j]) for i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , 500} at three values
of α.
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Supplementary Text Figure T27: Universal Model Community Size Overlap
Study Scenario 4 in Table T3. The first plot is a comprehensive clustering analysis
of the steady state values obtained from the Lotka-Volterra simulations. The x-
axis denotes the heterogeneity value α. The box plots are the silhouette values
pertaining to the number of clusters for which the silhouette index (maximum over
the number of clusters of the mean silhouette value for each given total number
of cluster) was defined. The total number of clusters pertaining to the silhouette
index is denoted on the top x-axis. The second row is a principle coordinate
analysis of the steady state values obtained at three different heterogeneity values.
Clusters are color coded to match the optimal clustering from k-medoids. The
third row of the figure plots maxi,j real(λi(A

[j])) as a function of α. The fourth
row is a plot of λi(A

[j]) for i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , 500} at three values
of α.
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Supplementary Text Figure T28: Universal Model Community Size Overlap
Study Scenario 5 in Table T3. The first plot is a comprehensive clustering analysis
of the steady state values obtained from the Lotka-Volterra simulations. The x-
axis denotes the heterogeneity value α. The box plots are the silhouette values
pertaining to the number of clusters for which the silhouette index (maximum over
the number of clusters of the mean silhouette value for each given total number
of cluster) was defined. The total number of clusters pertaining to the silhouette
index is denoted on the top x-axis. The second row is a principle coordinate
analysis of the steady state values obtained at three different heterogeneity values.
Clusters are color coded to match the optimal clustering from k-medoids. The
third row of the figure plots maxi,j real(λi(A

[j])) as a function of α. The fourth
row is a plot of λi(A

[j]) for i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , 500} at three values
of α.
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Supplementary Text Figure T29: Universal Model Community Size Overlap
Study Scenario 6 in Table T3. The first plot is a comprehensive clustering analysis
of the steady state values obtained from the Lotka-Volterra simulations. The x-
axis denotes the heterogeneity value α. The box plots are the silhouette values
pertaining to the number of clusters for which the silhouette index (maximum over
the number of clusters of the mean silhouette value for each given total number
of cluster) was defined. The total number of clusters pertaining to the silhouette
index is denoted on the top x-axis. The second row is a principle coordinate
analysis of the steady state values obtained at three different heterogeneity values.
Clusters are color coded to match the optimal clustering from k-medoids. The
third row of the figure plots maxi,j real(λi(A

[j])) as a function of α. The fourth
row is a plot of λi(A

[j]) for i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , 500} at three values
of α.
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Supplementary Text Figure T30: Universal Model Community Size Overlap
Study Scenario 7 in Table T3. The first plot is a comprehensive clustering analysis
of the steady state values obtained from the Lotka-Volterra simulations. The x-
axis denotes the heterogeneity value α. The box plots are the silhouette values
pertaining to the number of clusters for which the silhouette index (maximum over
the number of clusters of the mean silhouette value for each given total number
of cluster) was defined. The total number of clusters pertaining to the silhouette
index is denoted on the top x-axis. The second row is a principle coordinate
analysis of the steady state values obtained at three different heterogeneity values.
Clusters are color coded to match the optimal clustering from k-medoids. The
third row of the figure plots maxi,j real(λi(A

[j])) as a function of α. The fourth
row is a plot of λi(A

[j]) for i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , 500} at three values
of α.



. SUPPLEMENTARY TEXT 66

α

7 6.8 6.6 6.4 6.2 6 5.8 5.6 5.4 5.2 5 4.8 4.6 4.4 4.2 4 3.8 3.6 3.4 3.2 3 2.8 2.6 2.4 2.2 2 1.8 1.6 1.4 1.2

S
il
h
ou

et
te

V
al
u
es

0

0.2

0.4

0.6

0.8

1

Number of Clusters

2 2 2 2 2 2 2 2 3 2 2 2 3 2 2 2 2 3 3 2 2 2 2 2 2 2 2 2 2 2

α=7, clusters=2, SI=0.037

Principal Coordinate 1

-0.5 0 0.5

P
ri
n
ci
p
al

C
o
or
d
in
at
e
2

-0.5

0

0.5
α=4.2, clusters=2, SI=0.033

Principal Coordinate 1

-0.5 0 0.5 1

P
ri
n
ci
p
al

C
o
or
d
in
at
e
2

-0.5

0

0.5
α=1.2, clusters=2, SI=0.31

Principal Coordinate 1

-1 0 1

P
ri
n
ci
p
al

C
o
or
d
in
at
e
2

-0.5

0

0.5

α

7 6.8 6.6 6.4 6.2 6 5.8 5.6 5.4 5.2 5 4.8 4.6 4.4 4.2 4 3.8 3.6 3.4 3.2 3 2.8 2.6 2.4 2.2 2 1.8 1.6 1.4 1.2

m
ax

i
re
al
(λ

i)

-1

-0.5

0

0.5

1

α=7

Real

-2 -1 0

Im
ag

in
ar
y

-1

-0.5

0

0.5

1
α=4.2

Real

-2 -1 0

Im
ag

in
ar
y

-1

-0.5

0

0.5

1
α=1.2

Real

-2 -1 0

Im
ag

in
ar
y

-1

-0.5

0

0.5

1

Supplementary Text Figure T31: Universal Model Community Size Overlap
Study Scenario 8 in Table T3. The first plot is a comprehensive clustering analysis
of the steady state values obtained from the Lotka-Volterra simulations. The x-
axis denotes the heterogeneity value α. The box plots are the silhouette values
pertaining to the number of clusters for which the silhouette index (maximum over
the number of clusters of the mean silhouette value for each given total number
of cluster) was defined. The total number of clusters pertaining to the silhouette
index is denoted on the top x-axis. The second row is a principle coordinate
analysis of the steady state values obtained at three different heterogeneity values.
Clusters are color coded to match the optimal clustering from k-medoids. The
third row of the figure plots maxi,j real(λi(A

[j])) as a function of α. The fourth
row is a plot of λi(A

[j]) for i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , 500} at three values
of α.
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