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Fig S1. Is the hidden layer of the rEFH a linear PPC? If it is, the natural parameters of the posterior distribution
should be linearly decodable from the activities of that layer. In these plots, the posterior variance was computed with the
Kalman filter EM2; the posterior mean was decoded from the hidden units as throughout the paper (see Testing in the
Methods of the main text). Linearly decoded parameters (ordinates) are plotted against true parameters (abscissae), for all
trajectories and all time. (Hence, each point in the plots corresponds to a single discrete time in one of the trajectories. All
data are from testing, rather than training, trajectories.) Linear decoders were acquired by linear regression on training data.
(A) Linear decoding of the posterior mean from the hidden units. (B) Linear decoding of η1, the mean-to-variance ratio. (C)
Linear decoding of η2, the inverse variance of the posterior. (D) A nonlinear decoding of η2 (see text for details). That the fit
is superior to (C) suggests that the hidden layer is not a linear PPC.
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