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Appendix 

S1. ODM history description 

S.1.1 Initial ODM 

Our motivation comes from previous mathematical models based on hypoxia and 

concretely a model developed by Evans et al. [7], in which the compartments adopt a 

pseudophysical position in space. In general, our approach is a compilation of pre-

existing modified models. 

First, based on the Evans model we developed a semi-compartmental model. The 

dynamics of the initial model are based mainly on the mass action law. The key aspect 

of our models is the numerical identifiability and oxygen distribution. 

Division rates are modelled through oxygen concentration, as a key component for 

energy production through oxidative phosphorylation. Oxidative phosphorylation is the 

main mechanism of energy production by cancer cells, 18 times more productive than 

glycolysis. The model also contains information of the outer proliferating layers (stem 

and partly differentiated cells undergoing division) characterised as a number of 

concentric proliferating compartments (NP) with constant oxygen drop (see structural 

identifiability). 

Hypoxic cells (cells experiencing scarce nutrient and oxygen delivery and quiescent, 

“dormant” cells) are also considered in the model as they play a very important  role in 

intrinsic signalling for survival, proliferation and migration. Under hypoxic conditions 

(under 2mmHg), the cell reacts to the stress by producing several angiogenic and stress 

factors (HIF1α, VEGF, etc) which are responsible for the tortuous vascularisation of 

solid tumours.  
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Under extreme exposure to starvation and low oxygen levels, cells undergo necrosis 

which is typically localised in the core of the tumour. Necrotic death is hereby described 

in our model by the death rate (𝜇𝑞). These necrotic cells may be engulfed by the 

surrounding tissue, although to our knowledge, there has been no evidence reported in 

the literature. Further, although necrotic tissue may trigger an inflammatory response 

with subsequent macrophage recruitment, such a response has rarely been observed in 

immunocompromised animal models (cell components should migrate across the 

endothelium, see [s1, 2]). In this model, necrotic cells are not removed by the immune 

system and contribute to the tumour volume.  

On the other hand, highly proliferating cells undergo numerous intrinsic processes 

involving mutations and DNA damage, which may activate the mitochondrial apoptotic 

pathway [s3]. However, the actual fate of the apoptotic cells is still unclear. They could 

remain, be reabsorbed or transported to other parts of the organism [s4]. In our model, 

the parameter (𝜇𝑝) represents the apoptotic rate of cells, which were not depleted by 

phagocytosis from the host immune system.  

In our model, the communication between cell cycle and quiescent-hypoxic state is 

represented by a reversible reaction, where “deactivation”, (𝑟𝑜) and further “reactivation”, 

(𝑟1) are reciprocally possible. This allows future implementation of synergic therapeutic 

combinations, namely radio-chemotherapy [s5].  

Bringing all of these points together means the time rate of change of the proliferating 

volume is given by state equation (S1) whilst that of the quiescent region is state 

equation (S2) and necrosis is state equation (S3). Fig A shows a graphical 

representation of the model. Note that the ”reactivated” quiescent cells are evenly 

distributed across all the proliferating layers, thus NP appears on equation S1. 
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Figure A: radial representation of the semi-compartmental ODM 

 
𝑑𝑉𝑃𝑖
𝑑𝑡

= (𝑘𝑃(𝑃𝑂2𝑗) − 𝑟𝑜 − 𝜇𝑝)𝑉𝑃𝑗 + 𝑟1𝑉𝑄/𝑁𝑃 
 

(S1) 

𝑑𝑉𝑄
𝑑𝑡

= 𝑟𝑜∑𝑉𝑃𝑖 − (𝑟1 + 𝜇𝑞)𝑉𝑄 
 

(S2) 

𝑑𝑉𝑁
𝑑𝑡

= 𝜇𝑝∑𝑉𝑃𝑖 + 𝜇𝑞𝑉𝑄 
(S3] 

 

The parameters of the model for tumour growth description are therefore 𝜃 =

[𝑘𝑃
′  𝜇𝑝 𝜇𝑞 𝑟𝑜 𝑟1 𝑘𝑅 ]. 

Disclaimer: Two different indexes have been defined here: 

- i: refers to the natural counter of the shells 

- j: refers to the index of the re-discretised layers. 

In this model, the layers lose their integrity in every iteration, so P, works as a single 

compartment, which will be subsequently reorganised in different layers. So the 

interchange succeeds between 2 compartments P and Q effectively.  
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Knowing the algebraic equation describing oxygen partial pressure (eq. 6 of the main 

paper), the model described in eq. (S1) can transform into, 

where in this case the proliferating constant has been regrouped as 𝑘𝑃" = 𝑘𝑃′ ∙ 𝐶/𝑁𝑃 with 

units h-1. Inversely the oxygen levels in the surrounding tissue have become apparent 

𝑃𝑂2
𝑚𝑎𝑥 ′ = 𝑃𝑂2

𝑚𝑎𝑥 ′ ∙
𝑁𝑃

𝐶
. A new term has also been added, substituting the whole tumour 

volume by the sum of its internal terms as follows: 𝑉𝑇 = ∑ 𝑉𝑘
𝑁𝑝+2
𝑘=1 = ∑ 𝑉𝑃𝑖 + 𝑉𝑄 + 𝑉𝑁

𝑁𝑝
𝑖=1 . 

The apparent oxygen uptake rate now has adopted the form: 𝑘𝑅
′ = √𝑘𝑅/𝐷 ∙ √

4

3
𝜋

3
. 

The ODM model presented here is more flexible and provides with better results than the 

ODM presented in the main paper, but the relatively large number of parameters, makes the 

system not practically identifiable. However, in certain circumstances, this model would be 

more useful than the one presented in the main text of the paper.   

 

S1.2 Advanced ODM 

However, this rather complicated formulation can be simplified if we assume that 

hypoxia occurs at “a state of low cellular oxygen”. Since we calculate oxygen tension 

spatially, we can set up a “threshold” at which hypoxia occurs (in practical terms this is 

the oxygen levels at which hypoxia markers start to be expressed). We defined this 

“switch” as a smooth sigmoidal function. If we extend this definition to necrosis we can 

simulate the 1D maps of oxygen and hypoxia/necrosis (Fig. B / panels A-B). We also 

represented the switches of necrosis and hypoxia in the different layers, showing that 

the outer tumour layers present a lower proportion of hypoxia and necrosis. 

𝑑𝑉𝑃𝑗

𝑑𝑡
= (𝑘𝑃" (𝑃𝑂2

𝑚𝑎𝑥′

− (𝑗 − 1)𝑒−𝑘𝑅
′ ∙( √∑𝑉𝑘

3
− √𝑉𝑄
3 ) ((1 + 𝑒2𝑘𝑅′∙ √∑𝑉𝑘

3

)

− (1 + 𝑒𝑘𝑅
′ ∙(2 √∑𝑉𝑘

3
−√𝑉𝑄
3 )))) − 𝑟𝑜 − 𝜇𝑝)𝑉𝑃𝑗 + 𝑟1𝑉𝑄/𝑁𝑃 

 

(S4) 
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Figure B: Oxygen distribution and necrotic/hypoxic switches. (A) (Top) time-spatial 
distribution of hypoxia, (Bottom) of necrosis. (B) time-spatial distribution of oxygen. (c-d) 
quality of sigmoidal switches for an increasing number of shells (n=2-20).  

 
Following, the version of the ODM presented in section S1.2 is just an extended version of 

the discretisation throughout the whole tumour combined with the sigmoid switches for 

hypoxia and necrosis, resulting in the model presented in the main paper. 

  

n↑
n↑

A B

C D
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S2. Assumptions of the ODM 

We revisit here the main assumptions of the model presented in the main paper. This 

time we want to explore the mathematical spaces of the assumptions and ground our 

decisions. 

S2.1 Oxygen Diffusion  

We will first describe part of the rationale of oxygen diffusion in the model. There are 

two possible kinds of hypoxia characterisation: acute (perfusion related) or chronic 

(diffusion related). It is important to note that, different markers of hypoxia might be 

looking at different kind of hypoxia [s6], which suggests the need to analyse the 

problems on a case specific basis. 

 
Figure C: Diagram describing mass conservation within the tumour 
 

Oxygen diffusion is described by means of molecular transport equations. For any 

system we can define the mass conservation law as 𝐼𝑁 − 𝑂𝑈𝑇 = 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 −

𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛, as depicted in Fig CFigure , following the Stokes mass conservation (S5. 

𝐽𝐼𝑁 − 𝐽𝑂𝑈𝑇 = ∇𝐽 =
𝜕𝜙

𝜕𝑡
− 𝑅 

(S5) 
 

 
with J as matter flux, φ as concentration, t time and R reaction. Let us define Fick’s first 

Law, which states that matter flux is proportional to the change in concentration  such 

that 𝐽 = −D∇𝜙, with D as diffusivity (equation (S6). In general engineering text books 

Accumulation

OUT

Reaction

IN
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this can be found as 𝐹𝐿𝑂𝑊 =
𝑃𝑂𝑇𝐸𝑁𝑇𝐼𝐴𝐿

𝑅𝐸𝑆𝐼𝑆𝑇𝐴𝑁𝐶𝐸
, which holds for electrostatics, heat equations 

and momentum conservation. 

∇(−D∇𝜙) =
𝜕𝜙

𝜕𝑡
− 𝑅 

(S6) 
 

 
Let us define concentration as oxygen partial pressure  𝑃𝑂2 = 𝜙 and consider the quasi-

steady state approximation  
𝜕𝑃𝑂2

𝜕𝑡
= 0. If diffusion is independent of position, D ≠ f(r) we 

derive the eq. (S7). 

 

𝜕𝑃𝑂2
𝜕𝑡

= −∇ ∙ (𝐷(𝑟) ∙ ∇𝑃𝑂2) + 𝑅𝑂2

𝑆𝑆

𝐷
≠𝑓(𝑟)

→     0 ≈ −𝐷 ∙ ∇2𝑃𝑂2 + 𝑅𝑂2(𝑃𝑂2) 

 

(S7) 

Above, D, PO2 and RO2 are respectively the diffusion coefficient, oxygen partial pressure 

and oxygen uptake rate by the cells. Rearranging the equation and assuming spherical 

symmetry, we obtain the equation 10 of the main paper. 
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S2.2 Limited Oxygen Distribution 

Having introduced the oxygen diffusion problem we proceed with the ODM specif ic 

assumptions described by Fig D. 

 

Figure D: (A) Experimental and generated data of in-vivo and in-vitro growth 
curves of the A431 cell line. (B) Geometric assumption: surface area/volume ratio 
decreases when the volume increases. This affects oxygen distribution. (C) 
Rediscretisation. The radial points are not chosen equidistantly, but at the point 
at which the drop in oxygen is constant. This linearises the equations. (D) Optimal 
number of shells. (E) Model structure for the oxygen uptake rate, assuming 0, 1st 
and 2nd order. (F) Test of general tumour growth model structure, with constant, 
proportional and Michaelis-Menten structures. 

Some cell lines grow faster in-vitro than in-vivo, but it is not until a certain point, that this 

difference starts to create a quantitative margin. We simulated the in-vitro exponential 

growth (with a doubling time of ~18h) of the A431 cell line and plotted it along with in 

A

D

B

F
E

C

n=3 

n=7 

n>20 
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vivo data. We see after the first 4 days, the growth in vivo and in vitro are equivalent as 

shown in Fig D. However, somewhere between day 4 and 7 there is an inflection point, 

which in the literature is often referred to as “the angiogenic switch”. In our opinion, this 

is the switch from a cell suspension to a real organ, where oxygen delivery occurs from 

diffusion limited blood vessels rather than directly from the medium. This involves, not 

only development of a tumour vasculature, but also recruitment of stromal cells creating 

a favourable microenvironment. 

In a xenograft, the tumour is only in contact with the well vascularised epithelial tissue of 

the lower ectodermic layers from one side and the body wall from the other side. As 

opposed to the vascularised somatic tissue, the angiogenic vasculature of the tumour 

may not carry blood cells, and often transports low oxygen/nutrient plasma. Therefore, 

we can consider the effective access to blood carrying vessels is corrected through a 

shrinking lateral area-volume ratio (in other words, access to oxygen decreases with 

tumour growth). In the clinic, the situation may be reversed, thus the vasculature may 

be mature and tissue invasiveness may lead to the opposite trend (access to oxygen 

increases with tumour development). 

The heuristics applied here were also implemented in some examples in the literature 

[s7]. Fig D / panel B elucidates the comparison between the constant oxygen supply 

from the peripheral capillaries at 60 mmHg as epithelial tissue from the body wall and a 

variation with the V/A ratio as an exponential 3/2 function represented by eqs. (S8)-(S9).  
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Constant 

Supply 

𝑃𝑂2
𝑚𝑎𝑥 = 60𝑚𝑚𝐻𝑔 (S8) 

Shrinking 

Supply 

𝑃𝑂2
𝑚𝑎𝑥 = 60 ∙ (

𝑉𝑇𝑜
𝑉𝑇
⁄ )

2
3⁄

 𝑚𝑚𝐻𝑔 
(S9) 

 

Above, VTo and VT are the initial and final volumes of tumour respectively. The 

“shrinking supply” phenomenon has been vastly reported in the literature.  

S2.3 Spatial Discretisation 

In this model, as will be shown later in this section, the discretisation plays two main 

roles. One is the reduction of the total error associated with it and the other is 

transforming the model into a structurally identifiable model.  

Hereby, there are 3 possibilities to discretise the model dividing evenly:  

 Volume: thickness would be uneven and proportional to its mean oxygen 

concentration.  

 Radius: Error still increases with the gradient of PO2 

 Oxygen Partial Pressure Change: constant error function.  

In this sense, we applied the last and more consistent method as shown in Fig D / panel 

C. The plot shows the division of 5 intervals according to the even oxygen decay.  

To explore the minimum number of shells needed to obtain an acceptable accuracy, we 

explored the surface of oxygen diffusion. Results show that n=20 provides a sufficient 

accuracy (see Fig. D / panel D), at a tolerance of 0.3% in volume. 
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S2.4 Oxygen uptake rate 

Oxygenation in tumours is often lower than in other organs (up to 6 times less [s8]). 

Furthermore, hypoxic cells have little access to oxygen, for which metabolism slows 

down and to a pseudo-dormant state. In this first assumption, we consider 3 possible 

forms of the oxygen uptake rate, described by eqs. (S10)-(S12). 

Zero Order 𝑅𝑂2 = 𝑘𝑅′ ∙ 𝑃𝑂2
0 (S10) 

First Order 𝑅𝑂2 = 𝑘𝑅′ ∙ 𝑃𝑂2
1 (S11) 

Second Order 𝑅𝑂2 = 𝑘𝑅′ ∙ 𝑃𝑂2
2 (S12) 

 
Solving the problem described in eq. 6 of the main text with a given value of kR’= 2 cm-1 

combined with the different expressions of the uptake rate described in eqs. (S10(S12), 

we obtain oxygen curves as described in Fig D / panel E. The curve for first order is 

similar to a double exponential, which can be further represented by a single 

exponential and an error function of the form: 𝑃𝑂2 = 𝐶 ∙ 𝑒
𝑘𝑅′𝑡 + 𝜑, where 𝜑𝜖Ω𝜖ℝ is an 

error function. In other words, the zero order expression plus an error function would 

give you the first order expression. In this case, we have no previous information to 

calculate the error function. Although the second order expression yields a similar 

oxygen distribution, it cannot be solved analytically. Also, the oxygen uptake has been 

reported to follow first order dynamics numerous times. These arguments drove us to 

the choice of the first order expression by eq. (S11). 
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S2.5 Proliferation constant as function of the Oxygen Diffusion 

The proliferation constant should be oxygen dependent in our models (k p (PO2)). We 

propose here three alternatives considering constant, proportional and Michaelis-

Menten (MM) like types of equations.  

Let kp (PO2) describe the oxygen dependent proliferation function and kp’ the 

proliferation constant as a numeric parameter of the system, then we postulate the 

equations (S13)-(S15). 

Constant 𝑘𝑃 = 𝑘𝑃′𝑃𝑂2
0 (S13) 

Proportional  𝑘𝑃 = 𝑘𝑃′ ∙ 𝑃𝑂2 (S14) 

Michaelis-

Menten (MM) 

𝑘𝑃 = 𝑘𝑃′ ∙
𝑃𝑂2

𝐾𝑀 + 𝑃𝑂2
 

(S15) 

These equations yield the results in Fig D / panel F, where the proliferating rate is 

plotted against the tumour radius. It can be observed that there is a saturation 

characteristic of the MM model, which both yield very similar results for lower levels. In 

the range of the observed oxygen diffusion (maximal 200 μm) the values of both 

functions, Proportional and MM are very similar. Both can yield good results to explain 

growth retardation. In our model we used eq. (S14) for simplicity. 
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S3. Indentifiability problem  

 Parameter identifiability has been defined as: “Given a model of the system and 

specific input-output experiments, we ask, if the data were error free, could the 

parameters of the model be uniquely determined?” [36]. The concept of identifiability is 

directly linked to the model inference. In other words, we want to know whether our 

estimations really represent the model reality. 

Two different kinds of numerical identifiability are commonly handled in the literature: 

structural and practical. We analysed our model from the perspective of both 

identifiability tests, prioritising the statistical confidence of our model inference. 

S3.1 Structural Identifiability 

As the name indicates, the structural identifiability depends on the intrinsic structure of 

the model and was first introduced in compartmental models by Bergman and Astrom 

[s9]. In linear systems the availability of methods is extensive, though in non-linear 

systems the number of methods remains reduced. Chappell et al. [s10] discussed some 

methods which have been widely applied in biological systems.  

Here we applied the Taylor’s series problem to our observables (eq. 11 in main paper). 

First we identify our observable (tumour volume) at time t: 

𝑉𝑇(𝑡, 𝜃) =  ∑𝑉𝑖(𝑡, 𝜃). (S16) 

Let us approximate VT using a Taylor series expanded around the initial tumour volume. 

For simplicity we chose evenly distributed initial volumes across the tumour  Vi(0,θ) = 

VTo/n. The Taylor coefficients result in: 

0 order:  𝑓0 = ∑𝑉𝑖(𝑡, 𝜃) = 𝑉𝑇𝑜; (S17) 
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1 order 𝑓1 = ∑
𝑑𝑉𝑖(𝑡,𝜃)

𝑑𝑡
= 𝑘𝑝 (1−

𝑛+1

2cosh (−𝑘𝑅′ √𝑉𝑇𝑜
3 )

); 
(S18) 

2 order 𝑓2 = ∑
𝑑
2
𝑉𝑖(𝑡,𝜃)

𝑑𝑡
2 = 𝑘𝑝 ∙ 𝑓1 ∙ (1−

𝑛+1

2cosh (−𝑘𝑅′ √𝑉𝑇𝑜
3 )

∙ [1+𝑉𝑇𝑜
1/3 ∙

𝑘𝑅′ ∙ tanh (−𝑘𝑅′√𝑉𝑇𝑜
3 )]). 

(S19) 

For simplicity and due to the fact that the constants do not play any role in the structural 

indentifiability, we left lumped constants together. According to Taylor’s theorem each 

coefficient is linearly independent from the rest and therefore uniquely identifiable.  First 

and second coefficients (eqs. (S18) and (S19) show 2 linearily independent equations 

with two parameters. If we rearrange and combine the two equations in terms of kR’, we 

obtain: 

𝑓2 = 𝑓1 ∙ (1+
2𝑉𝑇𝑜

1/3 ∙ 𝑘𝑅′ ∙ sinh (−𝑘𝑅′√𝑉𝑇𝑜
3 )

2 cosh (−𝑘𝑅
′
√𝑉𝑇𝑜
3

)− (𝑛+ 1)
) 

(S20) 

To solve equation (S20), we face a similar challenge to solving equations of type: 𝑦 = 𝑥 ∙ 𝑒𝑥. 

If the domain is real and positive volumes: ∀𝑡, 𝜃; 𝑉𝑇𝑜 > 0 ∈ ℝ and also the parameter values 

𝜃 > 0 ∈ ℝ, there is a unique solution confined in our physically feasible ranges. This makes 

the problem locally identifiable, which is a sufficient condition. However, special care has 

to be taken in the practical identifiability and significance of the parameters. 
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S3.2 Practical Identifiability 

We refer to practical identifiability of nonlinear systems to the data-sensitive unique 

parameter estimations. There are a number of methods described in the literature, although 

here we will use the sensitivity data based on analytical Fisher Information Matrix (FIM) and 

sensitivity matrix (S), as described by Refs. [s11] and [43], where the sensitivity matrix is 

a 𝑟 ∙ 𝑡 × 𝑗 dimensional array with elements 𝑆𝑟𝑥𝑡,𝑗 =
𝜕𝑉𝑟

𝜕𝜃𝑗
]
𝑡

defined at each time (t), for each 

parameter j and for each measured output r (in this case tumour volume). The Fisher 

Information matrix was defined as 𝐹𝐼𝑀 = 𝑆𝑇 ∙ 𝑆, whereas, the covariance matrix (Co) has the 

form 𝐶𝑜 =
1

𝐹𝐼𝑀
. Generally in the notation, we will refer the total parameter vector as 𝜃𝑗 ∈

𝜃 ∈ ℝ𝑛. For non identifiable systems a subset of parameters based upon unidentifiable 

parameters can be selected, assuming a set of physiologically plausible parameters which 

are fixed. We used a rank revealing factorisation through singular value decomposition of the 

normalised sensitivity matrix  �̂� = 𝑈 ∙ Σ ∙ 𝑉𝑇, obtaining the rectangular diagonal matrix (Σ) of 

the nonnegative real numbers of the factorization. Further, the normalised sensitivity matrix 

(�̂�) adopts the form, �̂� = 𝑆 ∙ �̃�
�̃�
⁄ . Then we calculate the collinearity index (γ(S)) and the 

condition number (κ(S)), being 𝜅 =
𝜎1

𝜎𝐿𝑎𝑠𝑡
 and 𝛾 =

1

𝜎𝐿𝑎𝑠𝑡
, where 𝜎1 and 𝜎𝐿𝑎𝑠𝑡 are the first and 

last values of the factorised diagonal matrix (diagonal of Σ). Values for κ and γ higher than a 

fixed threshold 1000 and 10 respectively was considered unidentifiable. We then can 

determine the number of elements of Σ which fulfil the above condition, i.e. the number of 

“identifiable parameters” nip. The remaining parameters are the “unidentifiable parameters” 

nup, which in that case would be fixed. 

S3.3 Standard errors  

The standard errors (SE) of the ODM has been calculated by means of the “Fisher 

information matrix”, FIM: 
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𝐹𝐼𝑀 = 𝑆
−1 × 𝑆

𝜎𝑌−�̅�⁄ ∴ 𝑆𝐸 = √𝑑𝑖𝑎𝑔(𝐹𝐼𝑀−1).  (S21) 

Above 𝜎𝑌−�̅� represents the residual of the model estimation.  

 This method would provide some idea about the estimates, although it would be more 

accurately represented by bootstrapping or other resampling methods for better accuracy.  
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S4. Oxygen perfusion - observations 

In this section we will report some key features related to oxygen diffusion observed in 

preclinical tumours and reported in the literature, supporting some of the assumptions made 

in the model. 

Tumours are highly dynamic irregular complex structures of cells, but most importantly they 

are 3D structures. One interesting phenomenon to support this idea, as commented in the 

main text is that some necrotic areas originate in areas close to the vessels (CD31 positive, 

Fig E). This reminds us that immunohistochemical (IHC) data is data of a cross section of a 

3D tumour, where vessels may be visibly occluded or apparently wide open but occluded 

somewhere else. 

 

Figure E: IHC example of a lung explant tumour stained for CD31 and counterstained with 
Hematoxilin. The epithelial (E) thickness from the Stroma (S) to the necrotic (N) core ranges 
from around 200 µm, “Normal thickness”, to 20-80µm “Reduced thickness.” 

 

Table S1 shows the oxygen reach reported by different authors and the calculation of the 

oxygen uptake rate coefficient according to the equation 12 in the main text. We took the 

Normal 
Thickness 

Reduced 
Thickness 

N 

E 

S 

E 

N 

N 
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“oxygen reach” as a 2 mmHg threshold with external oxygen tension of 60mmHg. The output 

of this calculation provided us with values of kR’ ~200-400 cm-1 (Table A).  

Table A: Literature values of oxygen reach and consequent kR’ values. 

O2 reach 
Distance 

(µm) 
Source kR' (cm-1) 

50-100 Baish 2001 [35] 876-438 

40-200 Dewhirst 1994 [s12] 1095-218 

100-200 Brahimi-Horn 2007 [37] 438-218 

100-200 Carmeliet 2000 [s13] 438-218 

150 Krohn 2008 [s14] 292 

70 Krohn 2008 [s14] 626 

200 Own observations 218 

 

To elucidate the effect of vasculature in kR’ we drew a cartoon to show that hypoxia appears 

at approximately 250-400 μm from non-vascularised tissue, triggering secretion of VEGF, 

PDGF and other angiogenesis promoters. This is well known as the “angiogenic switch”. 

Thereafter, as the tumour grows it develops its own vasculature which is more distributed 

and angiogenic the lower this parameter is (Fig F / panel A). Reduction of the oxygen uptake 

rate translates into an apparent longer oxygen penetration in the tissue (Fig F / panel B) and 

thus greater proliferation rates. 

 

Figure F: Theoretical results for avascular oxygen uptake rate (A) Cartoon on the effect of the 
angiogenic switch in kR’. (B) Example of kR’ effect on oxygen penetration, calculated with Eq. 
(2). 

  

“Angiogenic 
switch” 

Well 
distributed 
angiogenic 
vessels 
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S5. Raw results 

The plots of the averages across data sets are provided on Fig G. 

 

Figure G: data sets used in for the parameter fit ordered by the type of cancer. (A) are 
adenocarcinoma cell lines, (B) fibroblast-derived cell lines, (C) Sarcoma cell lines, (D) 
squamous carcinoma cell lines and (E) are the rest of carcinomas mostly pancreatic, kidney 
and gastroenteric cell lines. 
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S6. Glossary of Appendix 

Symbol Name Units Symbol Name Units 

𝑉𝑃𝑖 
Proliferating tumour 

volume 
cm3 NK  

Necrosis 

constant 
mmHg 

H

iV , 𝑉𝑄 
Hypoxic/ Quiescent 

volume 
cm3 𝑟𝑜 

Inactivation 

constant 
day-1 

N

iV , 𝑉𝑁 Necrotic volume cm3 𝑟1 
Re-activation 

constant 
day-1 

TV  Tumour volume cm3 𝜇𝑝 
Death constant 

(proliferation) 
day-1 

ToV  Initial tumour volume cm3 𝜇𝑞 
Death constant 

(quiescence) 
day-1 

Tr  Tumour radius cm 𝐽 Generic flux  

i, j, k Layer # - 𝜙 
Generic 

concentration 
 

𝑛,𝑁𝑝 # of Layers - R 
Generic 

Reaction rate 
 

2 ,O iP  Oxygen Pressure mmHg FIM 

Fisher 

Information 

Matrix 

 

2

max

OP  Blood Oxygen Levels mmHg S 
Sensitivity 

matrix 
 

t  Time day Σ 
Covariance 

matrix 
 

pk  Proliferation rate (day.mmHg)-1 γ 
Collinearity 

index 
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'Rk  Oxygen uptake rate cm-1 κ 
Condition 

number 
 

HK  Hypoxia constant mmHg 𝜃 
Genericallly, 

parameters 
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