
S1 Text. Supplementary Methods

Task Paradigm

Subjects performed the permuted rule operations (PRO) cognitive paradigm [1], which combines a set of rule compo-

nents in various possible ways. Four logical decision, four sensory semantic and four motor response rules were used

in the procedure. Each task consisted of one rule from each of these categories, allowing the creation of 64 (4 × 4 ×

4) distinct but related tasks by permuting the possible rules. Of these 64 tasks, four (counterbalanced across partic-

ipants) were practiced (30 blocks, 90 trials each) during a 2-hr behavioral session 1–7 days before the neuroimaging

session, and the remaining 60 were executed for the first time during the neuroimaging session. The practiced tasks

were chosen for each subject such that each rule was included in exactly one of the four tasks, ensuring that all rules

were equally practiced. This also ensured that rule identity was controlled for across novel and practiced tasks (that

is, only rule combinations differed across the conditions). During the neuroimaging session, half of the mini-blocks

consisted of the practiced tasks and half of novel tasks, randomly interleaved. With ten runs total per participant,

each novel task was presented in one mini-block and each practiced task was presented in 15 mini-blocks.

The semantic rules consisted of sensory semantic decisions (for example, Is it sweet?). The logical decision rules

specified how to respond based on the semantic decision outcome(s) for each trial (for example, “Are the two items the

same in sweetness?”). The motor response rules specified which finger to use to respond based on the logical decision

outcome. The task instructions made explicit reference to the motor response for a ’true’ outcome (for example, right

index finger), and participants knew from the practice session to use the other finger on the same hand (for example,

right middle finger) for a ’false’ outcome (Fig. S1).

Task mini-blocks included instruction encoding and three trials. Each mini-block began with a task type cue, in-

dicating whether the upcoming task was novel (thin border) or practiced (thick border), followed by three instruction

screens. The order of the instructions following the task type cue was consistent for each participant, but counterbal-

anced across participants. Asterisks filled in extra spaces in each instruction screen to control for differences in total

visual stimulation across task rules. Each stimulus was presented for 800 ms with a 200 ms inter-stimulus interval.

Inter-event intervals (that is, between instructions and each of the three trials) were randomly varied between 2 and

6 seconds in duration, whereas inter-mini-block intervals randomly varied between 12 and 16 seconds in duration.

There were 12 mini-blocks per run (each of approximately 11 TRs in length), with six novel task mini-blocks and six

practiced task mini-blocks each. All task mini-blocks were included in all analyses, as there was at least one accurate

trial per mini-block for all participants.

Each subject (n = 15) performed a set of 64 distinct tasks, composed of unique combinations of task rules [1].

The combinations always involved one logical rule, one sensory semantic rule, and one motor response rule, each one

selected out of four possible rules in each category. Each subject practiced four out of the 64 possible tasks prior to

the scan session, including one instance of each of the 12 rules. The remaining 60 tasks were executed for the first

time during the scan session.
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Figure S1: The permuted rule operations behavioral procedure.
The permuted rule operations (PRO) procedure allowed for behavioral tasks to be created by uniquely combining
rules such that the same stimuli could elicit a distinct set of cognitive operations across distinct tasks. Each one of
the 64 tasks combine one of four possible logical decision rules, one of four possible sensory semantic rules, and one of
four possible motor response rules. Out of the 64 possible tasks, subjects practiced four in a behavioral session prior
to the neuroimaging session and the remaining 60 tasks were practiced for the first time during the scan. Participants
were over 90% accurate for both novel and practiced tasks.
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Parameter Search

The free parameters of the multislice community detection algorithm – the structural resolution parameter γ, and

the interslice coupling parameter, ω – must be selected prior to optimizing the modularity quality function. We

tuned these parameters by running a grid-search procedure aimed at maximizing the variability in the flexibility of

brain regions. The rationale was that this procedure would avoid parameter combinations where nodes never change

communities (since all nodes would have zero flexibility), as well as parameters where nodes always change communites

(all nodes would have unit flexibility, and therefore zero variance). In addition, this procedure prioritizes parameter

combinations that maximally differentiate between brain regions in terms of their dynamics. A search through the

parameter space revealed the parameters γ = 1.0 and omega = 0.45 to yield a high variability in the flexibility

coefficient (SD = 0.0182) with relatively stable communities (Fig. S2).

In addition to the (i) average and (ii) standard deviation of the flexibility coefficient, we extracted, for each

parameter combination, the (iii) average community structure similarity across partitions (as measured by the z-score

of the Rand coefficient [2]; the (iv) average community structure similarity across tasks; the (v) average number of

communities and; the (vi) average modularity index of the partition.

The structural resolution parameter and inter-slice coupling parameters were first optimized for the task data so

as to maximize the across-region variance in inter-task flexibility. We then used the same parameter values for the

resting state data, for which the parameter optimization criteria (inter-task flexibility) was undefined. This choice

facilitated direct comparison between the task and rest data sets, and further ensured that differences between task

and rest were due to differences in dynamic network reconfiguration, and not due to differences in model parameter

choices.

Application of Cartographic Methods to HCP Data

Here in the supplement, we examined the task-based cartography derived from an independent task-based fMRI data

set collected as part of the Washington University-Minnesota Consortium Human Connectome Project [3]. Participants

were recruited from Washington University (St. Louis, MO) and the surrounding area. All participants gave informed

consent. The data used were from the first and second quarter releases, consisting of data from 139 participants. Data

from 21 subjects were not used because one or more of the data runs were not collected for these subjects, such that

data from 118 subjects were included in the analyses. Whole-brain echo-planar imaging acquisitions were acquired

with a 32 channel head coil on a modified 3T Siemens Skyra with time to repetition (TR) = 720 ms, time to echo =

33.1 ms, flip angle = 52 degrees, bandwidth = 2,290 Hz/pixel, in-plane field of view = 208 times 180 mm, 72 slices,

and 2.0 mm isotropic voxels, with a multiband acceleration factor of 8 [4]. Data were collected over 2 days. On each

day 28 min of rest (eyes open with fixation) fMRI data across two runs were collected (56 min total), followed by 30

min of task fMRI data collection (60 min total). Each of the seven tasks was completed over two consecutive fMRI

runs. Additional task data collection details for this data set can be found [5].

We sought to preprocess the seven-task data set in a similar manner as the 64-task data set, although some
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Figure S2: Grid search over parameter space.
(A) Average and standard deviation of the flexibility coefficient, average community structure similarity across par-
titions and across tasks, average number of communities, and average partition quality, calculated for structural
resolution parameters (γ) and interslice coupling parameters (ω) varying between 1 and 10 in intervals of 1.0. The
optimal combination of parameters is one in which the standard deviation of the flexibility coefficient is maximum,
with relatively high community structure similarity across partitions and low community structure similarity across
tasks.
(B) Average and standard deviation of the flexibility coefficient, average community structure similarity across par-
titions and across tasks, average number of communities, and average partition quality, calculated for structural
resolution parameter (γ) and interslice coupling parameter (ω) varying between 0.0 and 1.0 in intervals of 0.05.

differences were necessary due to differences in data collection methods. For instance, nonlinear warping was required

to correct spatial distortions in this data set. This and related corrections (spatial normalization to a template, motion

correction, intensity normalization) were already implemented in a minimally processed version of the seven-task data

set described elsewhere [6]. With the volume (rather than the surface) version of the minimally preprocessed data, we

used AFNI [7] to additionally remove nuisance time series (motion, ventricle, whole-brain, and white matter signals,

along with their derivatives) using linear regression, remove the linear trend for each run, and spatially smooth the data

(4 mm full width at half maximum). Unlike the 64-task data set, motion censoring was not applied given relatively

minimal movement by participants and a desire to see whether replication of results would be possible without motion

censoring. In order to make this data set comparable to the 64-task data set, the data were temporally downsampled

(as the last step of preprocessing) by averaging data from every three consecutive volumes (making a 2,160 ms TR,

close to the 2,000 ms TR in the 64-task data set). This had an effect similar to a mild low-pass temporal filter on the
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data (removing frequencies above 0.46 Hz).
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