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S1 Proof of Theorem 1

We provide here the full proof of Theorem (1) of the main text. For convenience, we first reiterate Eq. (12)

and Theorem (1) from the main text. Consider the parameter dynamics (Eq. (12) in the main text)

dθi =

(
b(θi)

∂

∂θi
log pS(θ) + b(θi)

∂

∂θi
log pN (x|θ) + T b′(θi)

)
dt +

√
2Tb(θi) dWi (S1)

(for i = 1, . . . ,M). We show that the stochastic dynamics (S1) leaves the distribution

p∗(θ) ≡ 1

Z
q∗(θ) (S2)

invariant, where Z is a normalizing constant Z =
∫
q∗(θ) dθ and

q∗(θ) = p(θ |x)
1
T . (S3)

The provided proof applies for standard Wiener processes Wi, where process increments over time t − s are

normally distributed with zero mean and variance t− s:

Wt
i −Ws

i ∼ Normal(0, t− s) , (S4)

where Wt
i denotes the value of an instantiation of the process at time t.

Theorem 1. Let p(x,θ) be a strictly positive, continuous probability distribution over continuous or discrete

states xn and continuous parameters θ = (θ1, . . . , θM ), twice continuously differentiable with respect to θ. Let

b(θ) be a strictly positive, twice continuously differentiable function. Then the set of stochastic differential

equations (S1) leaves the distribution p∗(θ) invariant. Furthermore, p∗(θ) is the unique stationary distribution

of the sampling dynamics.
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Proof. First, note that the first two terms in the drift term of Eq. (S1) can be written as

b(θi)
∂

∂θi
log pS(θ) + b(θi)

∂

∂θi
log pN (x|θ) = b(θi)

∂

∂θi
log(pS(θ)pN (x|θ)) (S5)

= b(θi)
∂

∂θi
log p(x,θ) (S6)

= b(θi)
∂

∂θi
log(p(θi|x,θ\i)p(x,θ\i)) (S7)

= b(θi)

(
∂

∂θi
log(p(θi|x,θ\i) +

∂

∂θi
log p(x,θ\i))

)
(S8)

= b(θi)
∂

∂θi
log(p(θi|x,θ\i), (S9)

where θ\i denotes the vector of parameters excluding parameter θi. Hence, the dynamics (S1) can be written

as

dθi =

(
b(θi)

∂

∂θi
log p(θi|x,θ\i) + T b′(θi)

)
dt+

√
2Tb(θi) dWi (S10)

(for i = 1, . . . ,M). Eq. (S10) has drift Ak(θ) and diffusion Bik(θ):

Ak(θ) = b(θi)
∂

∂θi
log p(θi|x,θ\i) + T b′(θi) ,

Bii(θ) = 2T b(θi) , (S11)

Bik(θ) = 0 for i 6= k .

Hence, the Itô stochastic differential equations (S10) translate into the following Fokker-Planck equation,

d

dt
pFP(θ, t) =

∑
i

− ∂

∂θi

((
b(θi)

∂

∂θi
log p(θi|x,θ\i) + T b′(θi)

)
pFP(θ, t)

)
+

∂2

∂θ2i
(T b(θi)pFP(θ, t)) , (S12)

where pFP(θ, t) denotes the distribution over network parameters at time t. Plugging in the presumed stationary

distribution p∗(θ) = 1
Z q
∗(θ) on the right hand side of Eq. (S12), one obtains

d

dt
pFP(θ, t) =

∑
i

− ∂

∂θi

(
(b(θi)

∂

∂θi
log p(θi|x,θ\i) + T b′(θi))

q∗(θ)

Z

)
+

∂2

∂θ2i

(
T b(θi)

q∗(θ)

Z

)
(S13)

=
1

Z
∑
i

− ∂

∂θi

(
(b(θi)

∂

∂θi
log p(θi|x,θ\i) + T b′(θi)) q

∗(θ)

)
+

∂

∂θi

(
T b′(θi)q

∗(θ) + T b(θi)
∂

∂θi
q∗(θ)

)
(S14)

=
1

Z
∑
i

− ∂

∂θi

(
b(θi)

∂

∂θi
log p(θi|x,θ\i) q∗(θ)

)
+

∂

∂θi

(
T b(θi)

∂

∂θi
q∗(θ)

)
(S15)

=
1

Z
∑
i

− ∂

∂θi

(
b(θi)

∂

∂θi
log p(θi|x,θ\i) q∗(θ)

)
+

∂

∂θi

(
T b(θi) q

∗(θ)
∂

∂θi
log q∗(θ)

)
, (S16)
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which by inserting q∗(θ) = p(θ |x)
1
T becomes

d

dt
pFP(θ, t) =

1

Z
∑
i

− ∂

∂θi

(
b(θi)

∂

∂θi
log p(θi|x,θ\i) q∗(θ)

)
+

∂

∂θi

(
T b(θi) q

∗(θ)
1

T

∂

∂θi
log p(θ|x)

)
(S17)

=
1

Z
∑
i

− ∂

∂θi

(
b(θi)

∂

∂θi
log p(θi|x,θ\i) q∗(θ)

)
+

∂

∂θi

(
b(θi) q

∗(θ)
∂

∂θi
[log p(θ\i|x) + log p(θi|x,θ\i)]

)
(S18)

=
1

Z
∑
i

− ∂

∂θi

(
b(θi)

∂

∂θi
log p(θi|x,θ\i) q∗(θ)

)
+

∂

∂θi

(
b(θi) q

∗(θ)
∂

∂θi
log p(θi|x,θ\i)

)
(S19)

=
∑
i

0 = 0 . (S20)

This proves that p∗(θ) is a stationary distribution of the parameter sampling dynamics (S10). Under the

assumption that b(θi) is strictly positive, this stationary distribution is also unique. If the matrix of diffusion

coefficients is invertible, and the potential conditions are satisfied, the stationary distribution can be obtained

(uniquely) by simple integration. Since the matrix of diffusion coefficients is diagonal in our model, the diffusion

coefficient matrix is trivially invertible if all diagonal elements, i.e. all b(θi), are positive. Also the potential

conditions are fulfilled (by design), as can be verified by substituting (S11) into Equation (5.3.22) in [1],

Zi(θ) = B−1ii (θ)

(
2Ai(θ)− ∂

∂θi
Bii(θ)

)
(S21)

=
1

2Tb(θi)

(
2b(θi)

∂

∂θi
log p(θi|x,θ\i) + 2T b′(θi)− 2T b′(θi)

)
(S22)

=
1

T

∂

∂θi
log p(θi|x,θ\i) , (S23)

and by using that the normalization constant Z is independent of θi we can write

Zi(θ) =
1

T

∂

∂θi
log p(θi|x,θ\i) =

1

T

∂

∂θi

(
log p(θi|x,θ\i) + log p(θ\i|x)− logZT

)
(S24)

=
1

T

∂

∂θi
log

p(θ|x)

ZT
(S25)

=
∂

∂θi
log

p(θ|x)1/T

Z
=

∂

∂θi
log p∗(θ) . (S26)

This shows that Z(θ) = (Z1(θ), . . . , ZM (θ)) is a gradient. Thus, the potential conditions are met and the

stationary distribution is unique.

For strictly positive b(θ), the diffusion matrix B (Eq. (S11)) is positive definite. Convergence to the

stationary distribution follows then directly for strictly positive p∗(θ) (see Section 3.7.2 in [1]).
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