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I  Supplementary text 

1. Model generation  

In the SiComPre framework proteins interact with each other through specific regions called 
binding sites. The modelling structure comes from process calculi [1],  frequently used to model 
interactions of entities in concurrent systems. We consider proteins as the main entities of the 
system and domains as the interface through which proteins communicate. Therefore, an established 
communication indicate an interaction between two entities, moreover the communication channel 
allow changes in the state of the entity (which is not considered here). This is the basic idea of 
BlenX [2], a stochastic simulation framework based on process calculi and the Gillespie’s stochastic 
simulation algorithm [3]. Instead of considering the cell as a well-mixed container of molecules we 
split the simulation space in 4096 sub-volumes (SV) and allow only local interaction of proteins and 
their diffusion to neighboring compartments in the imaginary 2D simulation space (see details 
below). We chose protein binding sites according to protein domains using SMART [4] and check 
if there exists a known interaction between the identified domains of proteins involved in a protein-
protein interaction (PPI). Unfortunately this is not always the case. To consider the remaining PPIs 
in our analysis, we tried various  strategies: 

Full: If a DDI is not found between partners of a PPI then specific fictitious interacting domains are 
added to these proteins.  
noFictitious: A PPI is considered only if a corresponding DDI is found. This strategy yields less 
false positives, but the false negatives increase. 
Function: We add fictitious domains only if the proteins of the binary interaction are involved in the 
same biological function according to the MIPS database [5].  
As mentioned in the main text, the use of MIPS functions led to the highest composite scores 
(Figure 1) and this Function strategy enabled us to consider 7618 protein-protein interactions from 
the original Collins et al PPI dataset of 9074.  

Binding and unbinding rates for all molecules are set to 100 and 1 arbitrary unit respectively, thus 
favoring complex formation, but allowing unbinding of proteins that might be present in low 
abundance. Therefore, only protein abundances but not the specific binding rates have an influence 
on the propensity of possible reactions, with higher abundance proteins having a higher chance to 
participate in a binding reaction. Clearly this is a point that could be easily updated with specific 
binding and unbinding rates of each molecule in case such data would be available. 

2. Simulator settings 
A brief description of the algorithm is showed in the online methods section, here we explain how 
we handle the simulation space enabling us to parallellize the computation.  
 
In most Gillespie-type exact stochastic simulations[6], the simulator calculates the propensities for 
each possible reactions. However this is not always necessary as during each Gillespie step we do 
not need to recompute the whole set of interactions, only those that have been modified during the 
last performed reactions. In classic Gillespie algorithm space is not explicity assumed and the 
diffusion of molecules is considered as part of the reaction rates. To simulate protein complex 
formation it is absolutely important to consider space as well, because closely located proteins, or 
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proteins that already participate in the same complex should have higher probability to bind each 
other compared to those that are far. Therefore, simulation algorithms that don’t consider space like 
Gillespie or ODE modeling cannot capture the right behaviour in complexation and decomplexation 
of proteins, leading to the formation of long filament-like structures.  

If we would consider a single simulation space then real large complexes formed of a few types of 
high abundance proteins could be formed as all possible protein-protein interactions between 
protein complexes could be allowed.  The problem is that three proteins of complex that all bind to 
each other might not form the proper triangular structure of binding each other, rather they bind to 
other proteins available in the solution. For instance, a triangle formed by protein A, B and C where 
A interacts with B, B interacts with C and C interacts with A. This might not be observed because 
protein C in the temporary filament A-B-C have a chance of 1 over the abundance of A to bind with 
exactly the A protein already in the complex. This will generate filaments like A-B-C-A-B-C-A. 
When space is considered the amount of A proteins within one SV is very limited, thus C will bind 
to A closing the triangle. Similar problems could occur with larger protein complex, but the use of 
small sub-volumes reduces the chances of unrealistic complex formation. As explained in the main 
text, we consider the square root of the actual protein abundances. This further helps us to reduce 
the chances of such chain forming reactions. Furthermore the use of square root of abundances 
reduces the computational needs by greatly reducing high abundance protein levels while only 
minimally changing the levels of low abundance proteins. 

To deal with this, we consider a two dimensional discretized simulation space and diffusion of 
molecules between neighboring compartments. A two dimensional 64×64 square lattice with 4096 
compartments is enough to reduce the possibility of protein complex aggregation to a level that it is 
not interfering with normal protein complex formation. The proper 3D structure of the cell and 
known localization of the proteins could be used in a future version to make the simulation space 
biologically realistic, at this stage we just focused on reducing global mixing of proteins to a 
tractable level.   

Diffusion is also considered as a reaction when molecules move from one SV to a neighboring one, 
but if in one Gillespie step no diffusion or reaction transitions occured we do not need to recalculate 
propensities for the given SV. Due to the high number of propensities to be computed we need high 
computational power, but the independency of distant SVs enables us to use  massively parallel 
architectures like GPUs. Indeed this is problem that can have a considerably advantage from GPU 
computing[7]. To implement our algorithm we used CUDA, a GPU computing platform provided 
by NVIDA. Unlike CPUs, GPUs have a parallel architecture that emphasizes executing many 
parallel threads slowly, rather than executing a single thread very quickly. CUDA provide to 
developers a set of functions to develop concurrent algorithm that match parallel architecture of a 
GPU. 

Proteins diffuse randomly at discrete time steps according to the Flick’s law [8]. The diffusion time 
for each molecule is calculated according to its diffusion rate and corresponds to the time necessary 
for all proteins to diffuse in the neighbor SV: 

�� =
��

2 ∗ �	
 ∗ ��
			 = 1,… ,� 
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where l is the lattice size, �	
 is the number of dimensions, � is the diffusion rate and M is the 
number of protein types. We chose � = 0.1, �	
 = 2 and �� = 1 for every i. The values obtained 
give the timestep in which a diffusion reaction (move to neighbor) occurs. Proteins of type i diffuse 
at time �� ∗ �, where n is an integer incremented at every diffusion of proteins with type i. A 
random number is generated for each protein that has to be diffused and it will decide in which 
direction the protein is moving. In case a protein is bounded to another one, both proteins have to 
reach their diffusion time before moving to the same lattice. To limit the amount of proteins in a SV, 
the probability of moving to a neighboring lattice is proportional to the number of proteins in that 
lattice. The probability of a complex c to move in a sub-volume s is 

� =
�� − (�� + ��)

��
 

where MC is the maximum protien number per  SV (200 for yeast simulations and 400 for human 
simulations), �� is the current number of proteins in sub-volume s, �� is the size of the complex c. 
After a diffusion step the simulation time is updated to the diffusion time. In the interval between 
diffusion times an optimized instance of Gillespie Direct Method (DM) runs in each lattice allowing 
proteins to bind/unbind [3,8]. Compared to previous ideas [8], the reactants of our simulator are the 
binding sites, instead of the proteins.  

3. Clustering 
Our simulations return a list of complexes with high redundancies. We call these complexes 
simulated complexes (SC). Many of these SCs differ only in a few proteins and/or complexes could 
be connected through one or a few shared components (e.g. RSC bound to ISW1a as on Fig. 3 in the 
main text), thus we need both to split aggregated complexes and to merge complexes with almost 
equal constituents. We apply a clustering algorithm to the frequency matrix that represents how 
many times two proteins appear together in SCs. At this purpose we developed a weighted version 
of the IPCA algorithm. The original IPCA [9] has a weighting process for PPIs that count the 
number of shared neighbors of the two proteins involved in the interaction. In our version instead of 
counting shared neighbors, we sum the interaction score of each protein pairs from simulated 
complexes. We have found that the weighted IPCA algorithm gets higher composite score and f-
score results when the SiComPre simulation based frequency matrix is used ad weighting input 
compared to the originally used Collins et al. PPI dataset[10]. The clustering will return a new list 
of complexes we call refined complexes (RC). 

4. Qualitative prediction 

4.1 Measures on prediction quality 

To evaluate SiComPre we used various established measures of protein complex prediction 
performance:.  

Overlapping [11]: using this value, one can overlap a predicted complex with one from the 
reference dataset.  

�� !�"#(�, $) =
|&� ∩ &$|�

|&�| ∙ |&$|
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where VA is the set of proteins in complex A, analogous for VB. 

Recall [11]: it corresponds to the fraction of complexes in a reference dataset that were correctly 
predicted, where P is the set of predicted complexes and B is the set of reference complexes (false 
negatives decreases this). 

) *"�� = 	
|{,|, ∈ $, ∃# ∈ �, �� !�"#(#, ,) > 0}|

|$|
 

0 is a threshold value. In all of our analysis we select a threshold value of 0.25, therefore we 
consider a match only if we have an overlap score greater than 0.25. This value was used in the 
literature to test all earlier methods [12] and has been suggested as optimal value by Bader et al.[11]. 

Precision [11]: it is the fraction of predicted complexes that find a matching complex in the 
reference dataset (false positives decreases this).  

�! *	2	3� = 	
|{#|# ∈ �, ∃, ∈ $,4�(#, ,) > 0}|

|�|
 

F-score [11]: the harmonic mean between precision and recall. 

5 − 2*3! = 	
2 ∙ �! *	2	3� ∙ ) *"��

�! *	2	3� + ) *"��
 

Sensitivity [13]: the fraction of proteins of complex i which are found in a predicted complex j, 
���,6 =	7�,6 4�⁄ , 7�,6 = 	&	 ∩ &9 and 4� = |&	|. While, the reference complex-wise sensitivity is the 

maximal fraction of proteins of complex i by its best-matching predicted complex ��:; =

	
"<6=>
? ���,6 . Finally the general sensitivity or predicted complex-wise sensitivity is the weighted 

average of real complex-wise sensitivity over all complexes 

�� = 	
∑ 4����:;

A
�=>

∑ 4�
A
�=>

 

Positive Predictive Value [13]: the number of proteins in predicted complex j which belong to a 
reference complex i over the total number of proteins of predicted complex j assigned to all 
complexes, ��&�,6 =	7�,6 ∑ 7�,6

A
�=>⁄  . As above there is also a predicted complex-wise predictive 

value, ��&�BC =	
"<�=>
A ��&�,6. While the general PPV is  

��& = 	
∑ 7.6��&�BC

?
6=>

∑ 7.6
?
6=>

 

where 7.6 = ∑ 7�,6
A
�=> . 

Accuracy [13]: geometric accuracy is the geometrical mean of Sn and PPV, �**D!"*E =

√�� ∙ ��& 

Maximum Matching Ratio [12]: is a new measure proposed for complex prediction evaluation in the 
original publication of ClusterOne [12]. MMR finds the better correspondence between predicted 
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complexes and reference complexes and can be solved as a maximum bipartite matching in 
weighted graph, where nodes corresponding to a predicted complex are connected with an edge to a 
node representing a reference complex and its weight is the overlap between these complexes. 

Composite score [12]: it is the sum of accuracy, MMR and recall with a recall threshold strictly 
greater than 0.25. The same recall threshold has been used for f-score calculations as well. 

4.2 Qualitative results 

We evaluate our qualitative predictions by considering different criteria, datasets and organisms. As 
a principal organism for evaluation we used data on the well characterized model organism 
S.cerevisiae. When comparing SiComPre with earlier methods we chose parameter value according 
to the values reported in the ClusterOne prediction evaluation analysis [12]. We further tested a few 
newer methods that were not originally considered in the ClusterOne analysis [12]. For these 
methods (IPCA and PEWCC) we selected parameters according the original publications [9,14]. 
When reference datasets contained complexes with two components we used parameter values 
optimized for this in the ClusterOne paper. We tried to further optimize the parameters of these 
other methods, but could not find parameters that would provide better composite scores than the 
default values could give. We also tested SiComPre against data on Homo sapiens. In this case 
literature offers less complete datasets, hence this evaluation cannot be considered reliable as the 
Yeast one. For Yeast we used dataset of complexes retrieved from manually curated complexes, 
MIPS, SGD and CYC08, while for human we used the dataset of non-redundant human protein 
complexes [15]. It has been created from the list of human protein complexes in CORUM with 
similar complexes merged in case they have a Simpson’s coefficient greater than 0.5.  

Simpson’s coefficient is defined as a similarity between two complexes: 

�	
	�"!	GE(�, $) =
|HI∩HJ|

KLM(|HI|,|HJ|)
  

 

Where A and B are two complexes, while VA and VB represents the set of proteins in complex A 
and B respectively.  

Additionally, protein complexes with less than 3 proteins have been removed. To compare the 
performance of different methods we filtered out complexes which proteins are not covered by the 
initial PPI dataset, after this steps we removed all the complexes of size lower than 2. In Figure S2a 
we show that the composite scores of SiComPre outperform all other method, and also f-scores of 
multiple versions of SiComPre are better than any other methods could reach (Figure S3a). It could 
happen that a predicted complex match more than one reference complex with an overlap greater 
than 0.25 (default threshold established in the literature) which might lead to a biased recall. For 
instance, a ClusterOne predicted complex (consisting of YDL047W, YFR040W, YJL098W, 
YGR161C, YOR267C and YKR028W) matches three CYC08 reference complexes (Sap190p/Sit4p 
complex, Sap155p/Sit4p complex and Sap185p/Sit4p complex). Similarly, SiComPre predicted RC 
687 matches three complexes (transcription factor TFIID complex, SAGA complex and SLIK 
(SAGA-like) complex) with this 0.25 overlap threshold. In order to test the effect of this bias we 
calculated how the composite score and recall change considering only the best matching complex 
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for every predicted complex (Figure 2b), and also plotted the f-score measures according to this 
updated recall (Figure 3b). SiComPre outperforms other methods even in these tests. Finally, 
Figure 4 depicts the composite-score for complexes predicted for human. In this case only IPCA is 
slightly better than SiComPre, but it has a lower f-score (Figure 5). We also tested the composite 
score of the set of simulated complexes against many other methods (Figure 6), this time we 
removed all the complexes of size lower than 3.  

5. Quantitative prediction  
To predict the quantity of each refined complex for each simulated complex we identified the 
refined complex for which it has the highest overlap score [12]. This way, we were sure to consider 
each simulated complex only once. The predicted abundance of each refined complex is the square 
of the number of simulated complexes matching it, since we were considering the square root of 
protein abundances. It is possible to improve the prediction measured on the budding yeast datasets 
by the composite score by removing complexes of size greater than 16 with abundance lower than 6 
or the alternative f-score [11] could be optimized by removing complexes with size smaller than 3 
and abundance lower than 3. The same size and abundance threshold were used for SiComPre-LG 
and SiComPre-SM also in the human protein complex predictions. 

To predict abundances of refined complexes (RCs) we summed the total amounts of all simulated 
complexes (SCs) that had the highest overlap with the given (RC). In this way we considered all the 
simulated complexes only once. Thus the predicted abundance of each refined complex is the 
square of the sum of matching simulated complexes. A summary of the predicted value can be 
found in supplementary material. To validate the quantitative prediction with literature data we first 
sum the abundance of RCs that match the same reference complex and then we calculated the 
square of this value. For an example we predict the presence of 110,889 copies (333 total simulated 
complexes associated to 3 RCs, see Supplementary Table S1) of yeast proteasomes. In the main 
text we also provided other example of our quantitative predictions. Next, we checked whether 
these information can be used to further refine our qualitative prediction. Initially, we removed 
complexes with low abundance, but we observed that both f-score and composite score were 
decreasing (not shown). Thus, we tried more complex filtering strategies: in the first strategy we 
removed complexes bigger than a given size and with abundance lower than a given threshold. In 
the second strategy we removed complexes smaller than a given size and with abundance lower 
than a given threshold. In supplementary material we show that the optimal values for these 
strategies are independent from which yeast protein complex dataset we used for testing our 
predictions (Figure 7). In all cases we found the same parameter range where f-score is maximal 
with small size complexes removed or composite score is maximal with large size complexes 
removed. This finding highlights that the two scoring system differentially evaluates the errors in 
predicting large and small size complexes. We also checked whether protein complex abundances 
can be predicted simply by averaging the abundance of the single subunits. For every refined 
complex RC, we calculated the average abundance of its constitutive subunits and compared these 
values with the square of the quantitative prediction and found that there is a 14-fold difference 
between these values. The Pearson and Spearman’s correlations are 0.159 and 0.006 respectively. 
Finally, we tested if our predictions based on actual protein abundances can provide any 
improvement on the simple method, which would consider fixed protein abundance. For this test we 
considered the average of all protein abundance. SiComPre quantitative results show a higher 
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correlation with experimental results than the affixed protein abundance method (Pearson’s 
correlation = 0.408, Spearman’s correlation = 0.407, instead of 0.259 and 0.24 of the averaged-
based method, although these correlations are not significant as they are based on only 8 
measurements. As new quantitative data becomes available we might be able to show a more 
significant correlation between experimental and SiComPre predicted data. 

6. Use of alternative data sources  

In order to assess the reliability of protein complexes we verify whether each protein of a complex 
is involved in the same biological function. Yeast and Human protein-functions relations are 
retrieved from MIPS [16] and GO [17] respectively. In column “Functions” of the Supplementary 
Table S1 and S2 we list all the function terms and their p-value for a given complex according 
hypergeometric distribution. Complexes in which most of the proteins are involved in the same 
functions are more likely to be real complexes, however it could be the case that our binding 
strategy by the introduction of fictitious domains based on PPI, DDI and functional annotations lead 
to false positive predictions. For this reason we added a column that represents the fraction of 
fictitious domains involved in complexes. Analyzing this value we identified different scenarios. 
Big size complexes usually have a high fraction of fictitious domains, probably because all the 
proteins have similar functions. In these cases fictitious interactions make the protein complex 
denser but in most cases the same proteins could have been observed as a single (although less 
dense) complex even without the fictitious domains. A second possible scenario for the case of the 
ribosome is that ribosomal proteins do not bind directly rather they interact through rRNAs. Indeed 
both yeast and human ribosomes have a fraction of fictitious domains around 0.8. A more detailed 
analysis of the biological functions associated to constituents of properly predicted reference 
complexes but containing high fraction of fictitious domains shows that the most occurring GO and 
MIPS functions are related to DNA and RNA binding (e.g. histone binding or splicing). In the 
possible third scenario the set of proteins in a predicted complex have a high fraction of fictitious 
domains leading to false positive predictions, because it is more likely the predicted complex is a 
functional module rather than a real protein complex.   

7. Application of SiComPre to drug discovery 

Variation in the complexome leads to variation in phenotype. Therefore everything that affects the 
complexome, like drugs, can have a major impact on cellular behavior. We tested how a proteasome 
inhibitor drug, called Bortezomib affects the complexome in SiComPre simulations. To identify the 
protein-drug interactions we used the STITCH database [18], from where we considered 
interactions with a confidence score greater than 0.7. To select the right binding site/domain of 
bortezomib, we performed a domain enrichment using DAVID web-tool [19,20]. Next, for every 
protein-drug interaction we checked if the protein has one of the drug interacting domains identified 
in the last step and we add an interaction between the drug and that specific domain of the protein. 
If such domains are not present in a protein, then we add an interaction between the drug and the 
fictitious domains of the interacting proteins. This approach predicts that Bortezomib may bind with 
seven PFAM domains (PF00149, PF07992, PF00012, PF01851, PF00070, PF10584 and PF00227). 
Abundance of the drug was arbitrary set to 5000 in our simulation, which corresponds roughly to 
the highest protein abundance observed (50002). Clearly it could be interesting to test the dosage 
effect of the drug, with this current setting we were aiming to affect all targets of bortezomib. After 
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running the simulations with these settings the new complexes and their abundances were 
associated with complexes identified in the drug-free condition. We associated each of the “normal 
condition” protein complexes with its best matching complex after drug treatment while  drug 
induced complexes  that were not observed without the drug are listed in a separate sheet in 
Supplementary Table S3. We noticed bortezomib induced changes in protein complex abundances 
(based on a t-test on 3 runs with and without the drug) in Ribosome, Proteasome, Anaphase-
Promoting-Complex, LSM complex, Prefoldin and Multisynthetase complex. After a more careful 
look we realized that in some of these cases the abundance of the sum of complexes associated with 
a reference complex does not change, rather the exact composition of the complex changes to 
another variant of the reference complex that appeared in low abundance in the drug-free case. For 
instance, in the case of the APC the protein ANAPC10 is missing from the complex after the drug 
treatment. Some of the altered complexes are involved in transcriptional regulation (constitutive 
proteins are known transcription factors). A list of human transcription factors can be retrieved from 
AnimalTFDB [21]. We checked the function of each transcription factors and validate their possible 
involvement in Bortezomib treatement against literature data in Table 1.  This shows that 
SiComPre can be used to test how drugs effect the complexome in a qualitative and quantitative 
manner.   

8.  Future perspectives 

SiComPre opens to way to a completely new computational analysis in the field of systems biology. 
The computationally predicted complexes could be used to identify new complexes associated to 
diseases in different ways. First, one can do an OMIM [22] enrichment to associate complexes to 
diseases. Indeed, it is already known that proteins of the same complex have a probability higher 
than random to be involved in the same disease [23]. Based on this data, the SiComPre predicted 
complexes associated with diseases could be used as novel therapeutical targets [24]. Furthermore, 
experiments revealed various proteomic levels in cancer and other diseases, but such variations are 
also observed between different tissue types [25,26]. Such specific protein abundance levels can be 
used as input of SiComPre to predict the complexes with perturbed composition or abundance in the 
given condition. These could lead to predictions of new biomarkers. Another possible expansion 
comes from a recent tool that can predict protein abundance changes throughout the cell cycle [27]. 
This data could be used as input for our simulations allowing SiComPre to predict the dynamic of 
the complexome throughout the cell cycle. 

In this study we show that our qualitative and quantitative predictions are consistent with the 
current knowledge, but we can further improve SiComPre in various ways. Some SiComPre (and 
also by the use of other methods) predicted complexes are not consistent with the compartments the 
actual proteins have been identified. Therefore we filtered out all the complexes which contained 
proteins that were shown to localize in different compartments. Moreover many complexes are 
localized in membranes, hence could be bind to proteins in two organelles, in such case we expect 
to have at least one membrane protein in the complex. Figure 8 shows how the composite score of 
different methods changes if we remove such questioned localization complexes. (For this analysis 
the list of membrane proteins were retrieved from a recent study on membrane protein interactions 
in yeast [28], while protein localization data came from the COMPARTMENTS database [29].) 
SiComPre greatly outperforms all other methods is this compartmentalization corrected case. 
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However, using compartments as initial constrains of the simulation might limit the degree of 
freedom of the system and by this reduce the noise of our results. Indeed, a realistic 
compartmentalization of the simulation space would allow proteins to stay in a restricted region. In 
this way many complexes that were not predicted so far, due to the small probability to observe an 
interaction between low abundance proteins, will have higher chance to form. As explained above 
SiComPre predicted complexes which show a high overlap with reference complexes but have a 
high fraction of fictitious domains are often associated with “non-protein binding” (e.g. rRNA 
binding, DNA binding, ATP binding) functional terms.  Finally, SiComPre allows the use of proper 
binding/unbinding reaction rates and diffusion constants which are related to the strength of a bond 
between proteins. Large scale identification of such rates could be done by molecular dynamics 
simulations of binding between proteins with known structures. As such data becomes available it 
could be easily incorporated into the SiComPre workflow. 

9.  Documentation to SiComPre scripts and requirements 

In order to execute the scripts of SiComPre (File S1) the user needs to connect to our database, 
where data from the used resources is collected. This can be downloaded at 
www.cosbi.eu/index.php/research/prototypes/sicompre. Alternatively they can build their initial 
data files, in case interested about other organisms or want to start with other initial data. In this 
case they should follow the structure found in this database. The minimum hardware requirements 
are: a GPU device supporting CUDA and 4 GB of RAM. The typical simulation time of the yeast 
proteome analysis on a machine with NVidia GTS 360M, 4GB RAM and Core i7 2.6 Ghz is 8 
hours, while the human proteome requires about 1 day of computation. The software is built for 
Windows. Additionally, users who want to generate new models need to have Java and MySQL 
installed. Python is needed to run the optimization script and the script to generate the CSV files 
that are summarizing results. 
 
A detailed explanation of the script parameters can be found in the readme file in the pipeline 
package. In the first step of the pipeline one can generate a new model starting from a dataset in the 
database according different binding strategies. For example: 

java -jar GenModel.jar -s 2 -i Collins -f data/prot_collins.txt -o model_collins.xml 

in this case we generate a model for yeast with Collins PPI and function binding strategy. Next we 
can run the simulation. This step could take some time, depending on the performance of the used 
computer. 

SiComPre10.exe -f model_collins.xml 

Once the simulation is over the list of complexes are stored in a file called resultsComplex.out and 
one can use the results script to measure the quality of the simulated complexes.  

java -jar Results.jar 

These scores refer to the whole reference dataset, instead for the published results we removed 
complexes that contain proteins that are not in the initial PPI (they have no validated protein 
interactions). This script returns also the list of complexes in a different format that can be used as 
an input for the further scripts. 
In the next step on can build the frequency matrix with the complexes structure file retrieved from 
the simulation. 
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java -jar FrequencyMatrix.jar complex_structure.out 

and one can cluster the resulting file with IPCAw to retrieve the list of refined complexes. 

IPCAw.exe -Gint_network.txt -S2 -P2 -T0.5 -Oresults_quali.txt 

SBML format does not allow '-' character in the definition of species and protein like 'YPL249C-A', 
these have been translated into 'YPL249CA',  therefore one has to either replace 'CA ', 'WA ', 'CB ' 
and 'WB ' into 'C-A ', 'W-A ', 'C-B ' and 'W-B ' or remove '-' from the reference dataset 
One should repeat the steps from the simulations till this point to have two results. Finally one can 
generate a table like Supplementary Table 1 and 2. 

python generateCSV.py results_quali.txt results_C1_1.txt results_C1_2.txt int_network_2.txt 
fictitious_interactions.txt funcat.txt > prediction.csv 

It is also possible to filter out complexes according to one of the strategies to optimize the f-score or 
the composite score by removing small or large complexes with low abundance. 

python optimize.py results_quali.txt results_C1_1.txt results_C1_2.txt 6 16 c > final_prediction.txt 

With the last script one can check the final qualitative results against a reference dataset. 
python match_standalone.py -n collins2007.txt CYC08.txt results_filtered.txt 
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II.  Supplementary Figures 

 

Figure 1. Performance of fictitious binding strategies. Results from one SiComPre simulation compared 
with predictions of clusterOne with complex sizes greater or equal 2 and using the Collins PPI dataset and 
checking against the reference complex sets from three sources (CYC08, MIPS (2012) and SGD). The 
Function strategy greatly outperforms the other binding strategies. In the left panel reference complexes are 
removed if their proteins were not found in the initial PPI, in the right panel we kept the whole reference 
dataset. 

 

Figure 2. Composite score of different protein complex prediction methods tested against  the CYC08 
(left) and MIPS (right) budding yeast reference datasets of protein complexes. In this figure we show 
the performance of each step of SiComPre together with three earlier methods. a. composite scores reached 
by the various methods against the two datasets.  SiComPre Sim is the set of complexes after the simulation, 
SiComPre CL. after the clustering, “no 0” is the set of complexes removing those which have 0 abundance, 
SiComPre SM after applying the strategy to optimize the f-score (dropping out small size low abundance 
complexes) and SiComPre LG after applying the strategy to optimize the composite score (dropping out 
large size low abundance complexes). After the clustering step SiComPre already gives better scores than 
any other methods, but the LG filtering to optimize the composite score increases the scores even more. b. 

A B 
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composite score of the different methods with the updated recall measure (calculated according the best 
matching complex, not considering any other matched complexes, see section 4.2 for details). In the case of 
MIPS all the SiComPre variants are better than any other methods, while for CYC08 SiComPre is always 
better than clusterOne and MCODE, while IPCA performs similarly to SiComPre with SiComPre-LG 
performing the best.  

 

 

 

 

 

Figure 3. F- score of different protein complex prediction methods tested against  the CYC08 (left) and 
MIPS (right) budding yeast reference datasets of protein complexes. Same as supplementary figure 3, 
but in this case we tested all methods by the f-score scoring system. The F-score (right column) is the 
harmonic mean of recall (left column) and precision (central column). Refer to Supplementary Figure 3 and 
“Qualitative results” section for the description of the strategies name. Considering the set of complexes after 
the clustering and after the optimization for the f-score only clusterOne against CYC08 dataset has better 
results, but, as showed in Supplementary Figure 1, it has a lower composite score. While our set of 
complexes after the optimization for the f-score have always better results. b. F-score according the updated 

A 

B 
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recall definition (calculated according the best matching complex, not considering any other matched 
complexes, see section 4.2 for details). In both reference dataset SiComPre have a better f-score than 
ClusterOne, IPCA and MCODE[5,29]. 

 

 

 

 

Figure 4. Composite score of different methods with reference to the reduced human reference dataset 
of protein complexes. Here we tested SiComPre and other earlier protein complex prediction methods on 
the human data against the reduced reference set from CORUM (redundancies and small size complexes 
removed, following Havugimana et al.[15]). In this test IPCA outperforms SiComPre, but IPCA predicts  
more complexes than SiComPre with a huge redundancy between them. Still for MMR and Recall SiComPre 
Sim gives the highest scores. For SiComPre version notations see supplementary Figure S3.  
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Figure 5. F- score of different methods with reference to the reduced human reference dataset of 
protein complexes. Similar to supplementary figure 5, but methods are measured against by the f-score 
system. The recall of SiComPre Sim is the highest while the –SM strategy to optimize f-score leads to the 
high precision and hence to the highest f-score. MCODE has a very high precision on a low number of 
complexes causing a poor recall. 
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Figure 6. Composite scores based on various source data on yeast PPI by several existing methods 
compared tothat of SiComPre-SIM. Here, we are considering protein complexes of size >=3 and <= 100. 
Reference complexes are retrieved from MIPS, PPI datasets are Collins [10], Krogan, Krogan extended [30], 
Gavin[31] and Biogrid [32].  Results of other methods are copied from ClusterOne study, except for 
ClusterOne [12], PEWCC [14] and IPCA[9]. In this situation SiComPre can outperform every other method, 
except when using the Biogrid PPI, where PEWCC (an algorithm that can deal with high level of noise) and 
with Krogan extended where IPCA performs the best on the larger list of PPIs. 
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Figure 7. Optimizing f-score and composite score by removing large or small size low abundance 
complexes. We identified two different formulas to optimize the two quality measurment scores: i. by 
removing large size complexes with low abundance (left column) and ii. removing small size complexes 
with low abundance (right column). We saw that the first strategy leads to a higher composite score (see 
color code), while the second one achieve a better f-score. In the text we refer to these strategies as LG and 
SM respectively. In the left column we removed low abundance large size complezes, more specifically all 
complexes that do not satisfy the formula abundance >= x or complex size <= y. It is possible to observe that 
the optimal composite score for x and y are respectively 6 and 16. Following this all complexes with size 
greater than 16 and with abundance lower than 6 were removed from the predictions in the case of 
SiComPre-LG. The composite score is basically identical in the whole region (4-7, 15-17) when measured 
against two different yeast reference databases, thus we used the same values in the human SiComPre-LG 
predictions. The right column shows how f-score could be optimized by removing small size complexes with 
low abundance. Similar as above the formula this time we kept only complexes with abundance >= x or 
complex size >= y, the optimal value for x and y are both 3 and 3, again the reference database is not 
changing this value.. We have also checked f-score variation with the -LG strategy and composite score 
variation with the -SM strategy, but they did not show any imporvements (not shown). 
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Figure 8. Composite score of various methods after removing non-matching compartment complexes 
with reference to CYC08 (left) and MIPS (right) yeast databases. Similar to supplementary figure 3, but 
in this case the composite score is computed after removing all complexes which have proteins that are not 
localized in the same compartment and do not contain membrane bound proteins. Basically, we removed 
every predicted complex that is not consistent with compartments data[5,29]. In this scenario every variant of 
SiComPre outperform any other methods.  
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III. Supplementary Tables Description 
 

Supplementary Table S1: SiComPre predicted budding yeast protein complexes together with their 
predicted abundances 

 

Supplementary Table S2: SiComPre predicted human protein complexes together with their predicted 
abundances 

These tables are provided as separate Excel files. They were generated by the scripts generateCSV.py and 
generateCSVhuman.py found in File S1. 

The column headings are abbreviations for: 

• ID: ID of the refined complex. 
• RC Size: The number of proteins contained in the refined complex. 
• List of proteins: List of proteins contained in the refined complex (qualitative prediction). 
• Quantitative prediction: the predicted average abundance of the complex, that is the number of 

simulated complexes associated to this refined complex. This value is the average between two 
simulations. It is important to remember that this value should be raised to the square, since in our 
simulations we considered only the square root of protein complexes. 

• Abundance Sim 1: as above, but this is the abundance predicted by the first simulation. Note that 
this value is based on a prediction that use the square root of protein abundance, thus one should 
calculate the square of this value in order to get the true prediction. Abundance Sim 2: the 
abundance predicted by the second simulations. Note that this value is based on a prediction that use 
the square root of protein abundance, thus one should calculate the square of this value in order to 
get the true prediction. 

• Average size of simulated complexes: The average size of simulated complexes associated to this 
refined complex.  

• Best matching reference complex: the reference complex in CYC08 that has the highest overlap 
score with the refined complex. 

• Matching thr: The overlap score between reference complex and refined complex. 
• Size of reference complex: Number of proteins  the CYC08 reference complex contains.  
• Fraction of fictitious domains: The fraction of fictitious domains involved in the complex. 
• Functional enrichment: Functional enrichment calculated with hypergeometric function, without 

any correction (low (<0.005 p-values mean the complex contains proteins with the given annotation 
in higher proportion than randomly would be expected). For yeast we list MIPS functions, while for 
human GO annotations. 
 

Supplementary Table S3: SiComPre predictions on the effect of bortezomib on human protein 
complexes 

This table is provided as separate Excel files. 

The column headings mean (see Supplementary text Section 7 above for details):  

Sheet 1(Normal vs. Bortezomib) 
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• idref: ID of the refined complex in normal condition. 
• Size: The number of proteins contained in the refined complex (normal condition). 
• List of proteins in normal condition: List of proteins contained in the refined complex in normal 

condition (qualitative prediction). 
• Quantitative prediction: the predicted average abundance of the complex in normal condition, that 

is the number of simulated complexes associated to this refined complex. This value is the average 
between three simulations. It is important to remember that this value should be raised to the square, 
since in our simulations we considered only the square root of protein complexes. 

• Std Dev: standard deviation of protein complex abundance over three runs. 
• List of proteins with bortezomib: list of proteins contained in the refined complex retrieved from 

the simulations with Bortezomib that has the best matching with the corresponding normal condition 
refined complex. 

• Matching between new and old complex: overlap score between refined complex in normal 
condition and after Bortezomib addition.  

• Quantitative prediction with bortezomib: the predicted average abundance of the complex after 
the addition of Bortezomib (see quantitative prediction). 

• Std Dev with bortezomib: standard deviation of protein complex abundance over three runs after 
Bortezomib addition. 

• T: This value represents the statistical correlation between the observation of the complex in normal 
condition and the one after Bortezomib addition. To measure the correlation we used a t-test and the 
critical value considering 3 simulation runs and a probability of 0.01 is 5.84. Therefore, every 
complex above this threshold can be considered as a perturbation induced by the drug. 

• Best matching reference complex with normal condition: the reference complex in CYC08 that 
has the highest overlap score with the normal condition refined complex. 

• Matching thr: The overlap score between reference complex and normal condition refined complex. 
• Size of reference complex: how many proteins CYC08 reference complex contains.  
• Best matching reference complex with bortezomib: the reference complex in CYC08 that has the 

highest overlap score with the normal condition refined complex. 
• Matching thr: The overlap score between reference complex and refined complex with bortezomib. 
• Size of reference complex: how many proteins CYC08 reference complex contains.  
• Functional enrichment: Functional enrichment calculated with hypergeometric function, without 

any correction (low (<0.005 p-values mean the complex contains proteins with the given annotation 
in higher proportion than randomly would be expected). For yeast we list MIPS functions, while for 
human GO annotations. 
 

Sheet 2 (New Complexes): refers to description of table 1 and 2 

 

Supplementary Table 5: Predictions of the fraction of unbound proteins by SiComPre simulations of 
the yeast and human data in Microsoft Excel format. 

This table is provided as separate Excel files. 

The column headings mean (see Supplementary text Section 7 above for details):  

Sheet 1(Human) and Sheet 2(Yeast) 

• Protein: ID of the protein 
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• Fraction of free subunits: fraction of subunits that at the end of simulation are not bounded to any 
other protein 

• Abundance: abundance of the protein in the protein abundance dataset 
• # Interactions in the final model: number of interactions in the final model in which the protein is 

involved  
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IV.  Tables 
 

Table 1. Protein domains interacting with Brotezomib.  

List of protein domains identified with domain enrichment from the list of protein interacting with 
Bortezomib [18]. Analysis performed by the DAVID tool [19]. 

 

Pfam Accession Name 

PF00012 Hsp70 protein 

PF00070 Pyridine nucleotide-disulphide oxidoreductase 

PF00149 Calcineurin-like phosphoesterase 

PF00227 Proteasome subunit 

PF01851 Proteasome/cyclosome repeat 

PF07992 Pyridine nucleotide-disulphide oxidoreductase 

PF10584 Proteasome subunit A N-terminal signature 
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