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| Supplementary text

1. Model generation

In the SiComPre framework proteins interact wittcheather through specific regions called
binding sites. The modelling structure comes framcpss calculi [1], frequently used to model
interactions of entities in concurrent systems. Wéesider proteins as the main entities of the
system and domains as the interface through whigteips communicate. Therefore, an established
communication indicate an interaction between twtities, moreover the communication channel
allow changes in the state of the entity (whicmad considered here). This is the basic idea of
BlenX [2], a stochastic simulation framework basadorocess calculi and the Gillespie’s stochastic
simulation algorithm [3]. Instead of considering ttell as a well-mixed container of molecules we
split the simulation space in 4096 sub-volumes (&) allow only local interaction of proteins and
their diffusion to neighboring compartments in fineaginary 2D simulation space (see details
below). We chose protein binding sites accordingrtiiein domains using SMART [4] and check
if there exists a known interaction between thaiified domains of proteins involved in a protein-
protein interaction (PPI). Unfortunately this istrabways the case. To consider the remaining PPIs
in our analysis, we tried various strategies:

Full: If a DDI is not found between partners of a Ri@nt specific fictitious interacting domains are
added to these proteins.

noFictitious: A PPI is considered only if a corresponding DBIfound. This strategy yields less
false positives, but the false negatives increase.

Function: We add fictitious domains only if the proteinstloé binary interaction are involved in the
same biological function according to the MIPS Hdate [5].

As mentioned in the main text, the use of MIPS fioms led to the highest composite scores
(Figure 1) and thisFunction strategy enabled us to consider 7618 protein-pratéeractions from
the original Collins et al PPI dataset of 9074.

Binding and unbinding rates for all molecules agtte 100 and 1 arbitrary unit respectively, thus
favoring complex formation, but allowing unbindiraj proteins that might be present in low
abundance. Therefore, only protein abundancesditthe specific binding rates have an influence
on the propensity of possible reactions, with higdfgundance proteins having a higher chance to
participate in a binding reaction. Clearly thisaigoint that could be easily updated with specific
binding and unbinding rates of each molecule irecash data would be available.

2. Simulator settings
A brief description of the algorithm is showed ietonline methods section, here we explain how
we handle the simulation space enabling us to ledirz¢ the computation.

In most Gillespie-type exact stochastic simulatibhghe simulator calculates the propensities for
each possible reactions. However this is not alweessary as during each Gillespie step we do
not need to recompute the whole set of interactionky those that have been modified during the
last performed reactions. In classic Gillespie atbm space is not explicity assumed and the
diffusion of molecules is considered as part of tbaction rates. To simulate protein complex
formation it is absolutely important to consideasp as well, because closely located proteins, or
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proteins that already participate in the same cemphould have higher probability to bind each
other compared to those that are far. Therefoneylsition algorithms that don’t consider space like
Gillespie or ODE modeling cannot capture the riggtaviour in complexation and decomplexation
of proteins, leading to the formation of long filant-like structures.

If we would consider a single simulation space theal large complexes formed of a few types of
high abundance proteins could be formed as allilpesprotein-protein interactions between
protein complexes could be allowed. The problethas three proteins of complex that all bind to
each other might not form the proper triangulancttire of binding each other, rather they bind to
other proteins available in the solution. For instg a triangle formed by protein A, B and C where
A interacts with B, B interacts with C and C intgsawith A. This might not be observed because
protein C in the temporary filament A-B-C have armte of 1 over the abundance of A to bind with
exactly the A protein already in the complex. Thi#l generate filaments like A-B-C-A-B-C-A.
When space is considered the amount of A proteittsnwone SV is very limited, thus C will bind

to A closing the triangle. Similar problems coulctor with larger protein complex, but the use of
small sub-volumes reduces the chances of unreatistnplex formation. As explained in the main
text, we consider the square root of the actualeprabundances. This further helps us to reduce
the chances of such chain forming reactions. Furtbee the use of square root of abundances
reduces the computational needs by greatly reduigg abundance protein levels while only
minimally changing the levels of low abundance eir.

To deal with this, we consider a two dimensionactitized simulation space and diffusion of
molecules between neighboring compartments. A tineedsional 64x64 square lattice with 4096
compartments is enough to reduce the possibilifgrofein complex aggregation to a level that it is
not interfering with normal protein complex forn@ti The proper 3D structure of the cell and
known localization of the proteins could be usea ifuture version to make the simulation space
biologically realistic, at this stage we just foedson reducing global mixing of proteins to a
tractable level.

Diffusion is also considered as a reaction whenegwdes move from one SV to a neighboring one,
but if in one Gillespie step no diffusion or reactitransitions occured we do not need to recaleulat
propensities for the given SV. Due to the high nandf propensities to be computed we need high
computational power, but the independency of disgWs enables us to use massively parallel
architectures like GPUs. Indeed this is problent taa have a considerably advantage from GPU
computing[7]. To implement our algorithm we used@A) a GPU computing platform provided
by NVIDA. Unlike CPUs, GPUs have a parallel arctitee that emphasizes executing many
parallel threads slowly, rather than executing raglei thread very quickly. CUDA provide to
developers a set of functions to develop concuraggarithm that match parallel architecture of a
GPU.

Proteins diffuse randomly at discrete time steg®w@ting to the Flick’s law [8]. The diffusion time
for each molecule is calculated according to itRidion rate and corresponds to the time necessary
for all proteins to diffuse in the neighbor SV:
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wherel is the lattice sizedim is the number of dimensionB,is the diffusion rate and M is the
number of protein types. We chdse 0.1,dim = 2 andD; = 1 for every i. The values obtained
give the timestep in which a diffusion reaction grado neighbor) occurs. Proteins of typaiffuse

at timert; * n, where n is an integer incremented at every ddfuof proteins with typa. A
random number is generated for each protein thattdvde diffused and it will decide in which
direction the protein is moving. In case a protsitbounded to another one, both proteins have to
reach their diffusion time before moving to the sdattice. To limit the amount of proteins in a SV,
the probability of moving to a neighboring lattiseproportional to the number of proteins in that
lattice. The probability of a complex ¢ to moveaisub-volume s is

p _ MC — (A +Sp)
B MC

where MC is the maximum protien number per SV (RfiQyeast simulations and 400 for human
simulations) A is the current number of proteins in sub-volumeg,. $s the size of the complex c.
After a diffusion step the simulation time is upsthto the diffusion time. In the interval between
diffusion times an optimized instance of Gillespigect Method (DM) runs in each lattice allowing
proteins to bind/unbind [3,8]. Compared to previaleas [8], the reactants of our simulator are the
binding sites, instead of the proteins.

3. Clustering
Our simulations return a list of complexes with higedundancies. We call these complexes
simulated complexes (SC). Many of these SCs differ only in a few pnaseand/or complexes could
be connected through one or a few shared compo(egtsRSC bound to ISW1a as on Fig. 3 in the
main text), thus we need both to split aggregatedpiexes and to merge complexes with almost
equal constituents. We apply a clustering algoritionthe frequency matrix that represents how
many times two proteins appear together in SCshi&tpurpose we developed a weighted version
of the IPCA algorithm. The original IPCA [9] hasweeighting process for PPIs that count the
number of shared neighbors of the two proteinslirashin the interaction. In our version instead of
counting shared neighbors, we sum the interactmresof each protein pairs from simulated
complexes. We have found that the weighted IPCArdlyn gets highecomposite score andf-
score results when the SiComPre simulation based freguematrix is used ad weighting input
compared to the originally used Collins et al. BRiaset[10]. The clustering will return a new list
of complexes we catlefined complexes (RC).

4. Qualitative prediction
4.1 Measureson prediction quality

To evaluate SiComPre we used various establishedsunes of protein complex prediction
performance..

Overlapping [11]: using this value, one can overlap a predicted cexplith one from the
reference dataset.

VAN VB|?

0verlap(A, B) = W



where VA is the set of proteins in complex A, agalas for VB.

Recall [11]: it corresponds to the fraction of complexes in farence dataset that were correctly
predicted, where P is the set of predicted comglex®l B is the set of reference complexes (false
negatives decreases this).

_ |{b|b € B,3p € P,Overlap(p,b) > w}|

Recall
|B|

w is a threshold value. In all of our analysis wéeska threshold value of 0.25, therefore we
consider a match only if we have an overlap scoeatgr than 0.25. This value was used in the
literature to test all earlier methods [12] and besn suggested as optimal value by Bader et fl.[11

Precision [11]: it is the fraction of predicted complexes ttiend a matching complex in the
reference dataset (false positives decreases this).

{p|p € P,3b € B,NA(p,b) > w}|
|P|

Precision =

F-score[11]: the harmonic mean between precision and kecal

2 - Precision - Recall

F — score =
Precision + Recall

Sengitivity [13]: the fraction of proteins of complex i whicheafound in a predicted complex |,
Sn;; = T;;j/N;, T;j = VinVjandN; = |Vi|]. While, the reference complex-wise sengitivity is the
maximal fraction of proteins of complex i by its shenatching predicted complex;,, =
max;Z,Sn; ; . Finally the general sensitivity gredicted complex-wise sensitivity is the weighted
average ofeal complex-wise sensitivity over all complexes

n
i=1 Nisncoi

n
thi

Sn =

Positive Predictive Value [13]: the number of proteins in predicted complex j whitghong to a
reference complex i over the total number of preeof predicted complex | assigned to all
complexesPPV;; = T;;/¥i-1T;; . As above there is also a predicted complex-wissictive
vaIue,PPVd]. = max]., PPV; ;. While the general PPV is
ppyy = 2i=1 TiPPYa
it T
WhereTj = Z?:l Ti,j'

Accuracy [13]: geometric accuracy is the geometrical meanSof and PPVAccuracy =

VSn - PPV

Maximum Matching Ratio [12]: is a new measure proposed for complex prexfictvaluation in the
original publication of ClusterOne [12]. MMR findke better correspondence between predicted
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complexes and reference complexes and can be salsea maximum bipartite matching in
weighted graph, where nodes corresponding to agteeldcomplex are connected with an edge to a
node representing a reference complex and its wesghe overlap between these complexes.

Composite score [12]: it is the sum ofaccuracy, MMR andrecall with a recall threshold strictly
greater than 0.25. The same recall threshold hexs bised for f-score calculations as well.

4.2 Qualitativeresults

We evaluate our qualitative predictions by consiagdifferent criteria, datasets and organisms. As
a principal organism for evaluation we used datatlw® well characterized model organism
Scerevisae. When comparing SiComPre with earlier methods @se parameter value according
to the values reported in the ClusterOne prediatiaiuation analysis [12]. We further tested a few
newer methods that were not originally considenedhe ClusterOne analysis [12]. For these
methods (IPCA and PEWCC) we selected parametexyrding the original publications [9,14].
When reference datasets contained complexes withcomponents we used parameter values
optimized for this in the ClusterOne paper. Wedtrie further optimize the parameters of these
other methods, but could not find parameters thailev provide better composite scores than the
default values could give. We also tested SiCond@g&nst data oiomo sapiens. In this case
literature offers less complete datasets, hensabaluation cannot be considered reliable as the
Yeast one. For Yeast we used dataset of completdasved from manually curated complexes,
MIPS, SGD and CYCO08, while for human we used thiaskt of non-redundant human protein
complexes [15]. It has been created from the lishwoman protein complexes in CORUM with
similar complexes merged in case they have a Simpsoefficient greater than 0.5.

Simpson’s coefficient is defined as a similarityvioeen two complexes:

[VANVB|

Similarity(A,B) = SR(VALVED

Where A and B are two complexes, while VA and VBresents the set of proteins in complex A
and B respectively.

Additionally, protein complexes with less than teins have been removed. To compare the
performance of different methods we filtered oumptexes which proteins are not covered by the
initial PPI dataset, after this steps we removethalcomplexes of size lower than 2.Higure S2a

we show that theomposite scores of SiComPre outperform all other method, and &lswores of
multiple versions of SiComPre are better than ahgromethods could reachi@ure S3a). It could
happen that a predicted complex match more tharrefeeence complex with an overlap greater
than 0.25 (default threshold established in therdiure) which might lead to a biasestall. For
instance, a ClusterOne predicted complex (congisbh YDLO47W, YFR040W, YJLO98W,
YGR161C, YOR267C and YKR028W) matches three CYC8rence complexes (Sap190p/Sitdp
complex, Sapl55p/Sit4p complex and Sapl85p/Sitamptex). Similarly, SiComPre predicted RC
687 matches three complexes (transcription factedDl complex, SAGA complex and SLIK
(SAGA-like) complex) with this 0.25 overlap thre$tholn order to test the effect of this bias we
calculated how theomposite score andrecall change considering only the best matching complex
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for every predicted compleXigure 2b), and also plotted th&score measures according to this
updated recall (Figure 3b). SiComPre outperforms other methods even in thests. Finally,
Figure 4 depicts the composite-score for complexes preadiiictehuman. In this case only IPCA is
slightly better than SiComPre, but it has a lowscdre Figure 5). We also tested the composite
score of the set of simulated complexes againstynminer methodsHigure 6), this time we
removed all the complexes of size lower than 3.

5. Quantitative prediction
To predict the quantity of each refined complex éach simulated complex we identified the
refined complex for which it has the highest overdaore [12]. This way, we were sure to consider
each simulated complex only once. The predictech@ddce of each refined complex is the square
of the number of simulated complexes matchingin¢es we were considering the square root of
protein abundances. It is possible to improve tiegliption measured on the budding yeast datasets
by thecomposite score by removing complexes of size greater than 16 alithndance lower than 6
or the alternativé-score [11] could be optimized by removing complexes wdthe smaller than 3
and abundance lower than 3. The same size and ahcedhreshold were used for SiComPre-LG
and SiComPre-SM also in the human protein compiesiptions.

To predict abundances of refined complexes (RCsyuvmemed the total amounts of all simulated
complexes (SCs) that had the highest overlap Wwighgtven (RC). In this way we considered all the
simulated complexes only once. Thus the predictadh@ance of each refined complex is the
square of the sum of matching simulated compleResummary of the predicted value can be
found in supplementary material. To validate thargitative prediction with literature data we first
sum the abundance of RCs that match the same meéei@mplex and then we calculated the
square of this value. For an example we predicptiesence of 110,889 copies (333 total simulated
complexes associated to 3 RCs, Sapplementary Table S1) of yeast proteasomes. In the main
text we also provided other example of our quatingapredictions. Next, we checked whether
these information can be used to further refine qualitative prediction. Initially, we removed
complexes with low abundance, but we observed hlmdlh f-score and composite score were
decreasing (not shown). Thus, we tried more compleeting strategies: in the first strategy we
removed complexes bigger than a given size and atitimdance lower than a given threshold. In
the second strategy we removed complexes smaber dhgiven size and with abundance lower
than a given threshold. In supplementary material show that the optimal values for these
strategies are independent from which yeast protemmplex dataset we used for testing our
predictions Figure 7). In all cases we found the same parameter rangeevidseore is maximal
with small size complexes removed aymposite score is maximal with large size complexes
removed. This finding highlights that the two sagrisystem differentially evaluates the errors in
predicting large and small size complexes. We elsxrked whether protein complex abundances
can be predicted simply by averaging the abundaricéne single subunits. For every refined
complex RC, we calculated the average abundanite obnstitutive subunits and compared these
values with the square of the quantitative predictand found that there is a 14-fold difference
between these values. The Pearson and Spearmarétations are 0.159 and 0.006 respectively.
Finally, we tested if our predictions based on altprotein abundances can provide any
improvement on the simple method, which would cdesfixed protein abundance. For this test we
considered the average of all protein abundanc@orSPre quantitative results show a higher
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correlation with experimental results than the x&fi protein abundance method (Pearson’s
correlation = 0.408, Spearman’s correlation = 0,48%tead of 0.259 and 0.24 of the averaged-
based method, although these correlations are igoifisant as they are based on only 8
measurements. As new quantitative data becomesableawe might be able to show a more
significant correlation between experimental andddnPre predicted data.

6. Useof alter native data sour ces

In order to assess the reliability of protein coexgls we verify whether each protein of a complex
is involved in the same biological function. Yeastd Human protein-functions relations are
retrieved from MIPS [16] and GO [17] respectivdly.column “Functions” of thé&upplementary
Table S1 andS2 we list all the function terms and their p-valuwe & given complex according
hypergeometric distribution. Complexes in which mofkthe proteins are involved in the same
functions are more likely to be real complexes, &éosv it could be the case that our binding
strategy by the introduction of fictitious domalesed on PPI, DDI and functional annotations lead
to false positive predictions. For this reason wideal a column that represents the fraction of
fictitious domains involved in complexes. Analyzitigs value we identified different scenarios.
Big size complexes usually have a high fractiorfictitious domains, probably because all the
proteins have similar functions. In these casestifios interactions make the protein complex
denser but in most cases the same proteins coulg tbeen observed as a single (although less
dense) complex even without the fictitious domamsecond possible scenario for the case of the
ribosome is that ribosomal proteins do not bineéctly rather they interact through rRNAs. Indeed
both yeast and human ribosomes have a fractiorttitidus domains around 0.8. A more detailed
analysis of the biological functions associatedctmstituents of properly predicted reference
complexes but containing high fraction of fictittodomains shows that the most occurring GO and
MIPS functions are related to DNA and RNA bindirggg( histone binding or splicing). In the
possible third scenario the set of proteins inedmted complex have a high fraction of fictitious
domains leading to false positive predictions, beeait is more likely the predicted complex is a
functional module rather than a real protein comple

7. Application of SiComPreto drug discovery

Variation in the complexome leads to variation irepotype. Therefore everything that affects the
complexome, like drugs, can have a major impactedilar behavior. We tested how a proteasome
inhibitor drug, called Bortezomib affects the coeygme in SiComPre simulations. To identify the
protein-drug interactions we used the STITCH deaeb§l8], from where we considered
interactions with a confidence score greater than Do select the right binding site/domain of
bortezomib, we performed a domain enrichment ugdAYID web-tool [19,20]. Next, for every
protein-drug interaction we checked if the proteas one of the drug interacting domains identified
in the last step and we add an interaction betvieerrug and that specific domain of the protein.
If such domains are not present in a protein, theradd an interaction between the drug and the
fictitious domains of the interacting proteins. happroach predicts that Bortezomib may bind with
seven PFAM domains (PF00149, PF07992, PF00012,8520PF00070, PF10584 and PF00227).
Abundance of the drug was arbitrary set to 5000unsimulation, which corresponds roughly to
the highest protein abundance observed (§0@learly it could be interesting to test the dyesa
effect of the drug, with this current setting wergvaiming to affect all targets of bortezomib. Afte
8



running the simulations with these settings the nsamplexes and their abundances were
associated with complexes identified in the druegfcondition. We associated each of the “normal
condition” protein complexes with its best matchiogmplex after drug treatment while drug
induced complexes that were not observed withbatdrug are listed in a separate sheet in
Supplementary Table S3. We noticed bortezomib induced changes in pratemplex abundances
(based on a t-test on 3 runs with and without theg)ddin Ribosome, Proteasome, Anaphase-
Promoting-Complex, LSM complex, Prefoldin and Ms§tithetase complex. After a more careful
look we realized that in some of these cases thaddnce of the sum of complexes associated with
a reference complex does not change, rather thet exanposition of the complex changes to
another variant of the reference complex that ajgoem low abundance in the drug-free case. For
instance, in the case of the APC the protein ANAP@&1missing from the complex after the drug
treatment. Some of the altered complexes are iedbin transcriptional regulation (constitutive
proteins are known transcription factors). A lishaman transcription factors can be retrieved from
AnimalTFDB [21]. We checked the function of eadmiscription factors and validate their possible
involvement in Bortezomib treatement against liie@ data inTable 1. This shows that
SiComPre can be used to test how drugs effect dhgplexome in a qualitative and quantitative
manner.

8. Future perspectives

SiComPre opens to way to a completely new compmurtatianalysis in the field of systems biology.
The computationally predicted complexes could bedu® identify new complexes associated to
diseases in different ways. First, one can do ariNDK2] enrichment to associate complexes to
diseases. Indeed, it is already known that protefrthe same complex have a probability higher
than random to be involved in the same disease B&3ed on this data, the SiComPre predicted
complexes associated with diseases could be usedvas therapeutical targets [24]. Furthermore,
experiments revealed various proteomic levels mceaand other diseases, but such variations are
also observed between different tissue types [25Rfch specific protein abundance levels can be
used as input of SiComPre to predict the complextsperturbed composition or abundance in the
given condition. These could lead to predictionsefWv biomarkers. Another possible expansion
comes from a recent tool that can predict protbuomdance changes throughout the cell cycle [27].
This data could be used as input for our simulatialbowing SiComPre to predict the dynamic of
the complexome throughout the cell cycle.

In this study we show that our qualitative and ditative predictions are consistent with the
current knowledge, but we can further improve Si®oenin various ways. Some SiComPre (and
also by the use of other methods) predicted conegl@xe not consistent with the compartments the
actual proteins have been identified. Thereforefiliered out all the complexes which contained
proteins that were shown to localize in differeninpartments. Moreover many complexes are
localized in membranes, hence could be bind toeprstin two organelles, in such case we expect
to have at least one membrane protein in the complgure 8 shows how the composite score of
different methods changes if we remove such quastidocalization complexes. (For this analysis
the list of membrane proteins were retrieved frone@nt study on membrane protein interactions
in yeast [28], while protein localization data cafrem the COMPARTMENTS database [29].)
SiComPre greatly outperforms all other methodshis tompartmentalization corrected case.
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However, using compartments as initial constraihghe simulation might limit the degree of
freedom of the system and by this reduce the nabkeour results. Indeed, a realistic
compartmentalization of the simulation space walldw proteins to stay in a restricted region. In
this way many complexes that were not predictethsadue to the small probability to observe an
interaction between low abundance proteins, willehhigher chance to form. As explained above
SiComPre predicted complexes which show a highlapewith reference complexes but have a
high fraction of fictitious domains are often asated with “non-protein binding” (e.g. rRNA
binding, DNA binding, ATP binding) functional termg-inally, SiComPre allows the use of proper
binding/unbinding reaction rates and diffusion ¢ants which are related to the strength of a bond
between proteins. Large scale identification ofhsuates could be done by molecular dynamics
simulations of binding between proteins with knostructures. As such data becomes available it
could be easily incorporated into the SiComPre Wovk

9. Documentation to SiIComPre scripts and requirements

In order to execute the scripts of SiComHAfdg S1) the user needs to connect to our database,
where data from the wused resources is collectedis Tbhan be downloaded at
www.cosbi.eu/index.php/research/prototypes/sicom@ternatively they can build their initial
data files, in case interested about other organiemwant to start with other initial data. In this
case they should follow the structure found in dasabase. The minimum hardware requirements
are: a GPU device supporting CUDA and 4 GB of RAMe typical simulation time of the yeast
proteome analysis on a machine with NVidia GTS 36@@B RAM and Core i7 2.6 Ghz is 8
hours, while the human proteome requires aboutyloflacomputation. The software is built for
Windows. Additionally, users who want to generagavrmodels need to have Java and MySQL
installed. Python is needed to run the optimizasoript and the script to generate the CSV files
that are summarizing results.

A detailed explanation of the script parameters banfound in the readme file in the pipeline
package. In the first step of the pipeline one gamerate a new model starting from a dataset in the
database according different binding strategiesekkample:

java -jar GenModel.jar -s 2 -i Collins -f data/prot_collins.txt -o model_collins.xml
in this case we generate a model for yeast withirGoPPI and function binding strategy. Next we

can run the simulation. This step could take same,tdepending on the performance of the used
computer.

S ComPrel0.exe -f model_collins.xml

Once the simulation is over the list of complexes stored in a file calledesultsComplex.out and
one can use the results script to measure thetyjoalihe simulated complexes.

java -jar Results,jar

These scores refer to the whole reference datamstead for the published results we removed
complexes that contain proteins that are not initigal PPl (they have no validated protein
interactions). This script returns also the liscomplexes in a different format that can be used a
an input for the further scripts.

In the next step on can build the frequency matibh the complexes structure file retrieved from
the simulation.

10



java -jar FrequencyMatrix.jar complex_structure.out
and one can cluster the resulting file with IPCAwretrieve the list of refined complexes.
IPCAw.exe -Gint_network.txt -S2 -P2 -T0.5 -Oresults_quali.txt

SBML format does not allow -' character in theini@ibn of species and protein like "YPL249C-A',
these have been translated into "YPL249CA', tbeeebne has to either replace 'CA ', 'WA', 'CB"
and 'WB "into 'C-A ', 'W-A"', 'C-B ' and 'W-B ' eemove '-' from the reference dataset

One should repeat the steps from the simulatidinghis point to have two results. Finally one can
generate a table likeupplementary Table 1 and 2.

python generateCSV.py results quali.txt results C1 1.txt results C1 2.txt int_network 2.txt
fictitious_interactions.txt funcat.txt > prediction.csv

It is also possible to filter out complexes accogdio one of the strategies to optimize fiseore or
the composite score by removing small or large complexes with low atbamce.

python optimize.py results_quali.txt results C1_1.txt results C1 2.txt 6 16 ¢ > final_prediction.txt

With the last script one can check the final ga#éile results against a reference dataset.
python match_standalone.py -n collins2007.txt CYCO08.txt results filtered.txt
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1. Supplementary Figures
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Figure 1. Performance of fictitious binding strategies. Results from one SiComPre simulation compared
with predictions of clusterOne with complex sizesager or equal 2 and using the Collins PPI dataset
checking against the reference complex sets froeetbources (CYCO08, MIPS (2012) and SGD). The
Function strategy greatly outperforms the other bindingtegjies. In the left panel reference complexes are
removed if their proteins were not found in thei@iPPlI, in the right panel we kept the whole refee
dataset.
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Figure 2. Composite score of different protein complex prediction methodstested against the CYCO08
(left) and MIPS (right) budding yeast r efer ence datasets of protein complexes. In this figure we show
the performance of each step of SiComPre togethkrthwree earlier methoda. composite scores reached
by the various methods against the two dataseondre Sim is the set of complexes after the sitrad,
SiComPre CL. after the clustering, “no 0” is thé glecomplexes removing those which have 0 aburglanc
SiComPre SM after applying the strategy to optintieef-score (dropping out small size low abundance
complexes) and SiComPre LG after applying the exgsato optimize the composite score (dropping out
large size low abundance complexes). After thetetirgy step SiComPre already gives better scoees th
any other methods, but the LG filtering to optimike composite score increases the scores evenlmore
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composite score of the different methods withupeated recall measure (calculated according the best

matching complex, not considering any other matauedplexes, see section 4.2 for details). In tse cd
MIPS all the SiComPre variants are better thanahgr methods, while for CYC08 SiComPre is always

better than clusterOne and MCODE, while IPCA perf®similarly to SiComPre with SiComPre-LG

performing the best.
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Figure 3. F- score of different protein complex prediction methodstested against the CY CO08 (left) and

MIPS (right) budding yeast reference datasets of protein complexes. Same as supplementary figure 3,

but in this case we tested all methods by the fessooring system. The F-score (right column) és th

harmonic mean of recall (left column) and preciqicentral column). Refer to Supplementary Figuean@d
“Qualitative results” section for the descripticiitioe strategies name. Considering the set of cexesl after

the clustering and after the optimization for trecbre only clusterOne against CYCO08 dataset hiserbe

results, but, as showed in Supplementary Figuitehas a lower composite score. While our set of

complexes after the optimization for the f-scoreehalways better results. F-score according thgdated
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recall definition (calculated according the best matcldamplex, not considering any other matched
complexes, see section 4.2 for details). In bobremce dataset SiComPre have a better f-score than
ClusterOne, IPCA and MCODE[5,29].
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Figure 4. Composite score of different methods with reference to the reduced human refer ence dataset

of protein complexes. Here we tested SiComPre and other earlier pratminplex prediction methods on

the human data against the reduced referenceosetGORUM (redundancies and small size complexes
removed, following Havugimana et al.[15]). In thést IPCA outperforms SiComPre, but IPCA predicts
more complexes than SiComPre with a huge redundaeteyeen them. Still for MMR and Recall SiComPre
Sim gives the highest scores. For SiComPre versitgtions see supplementary Figure S3.
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Figure5. F- score of different methodswith reference to the reduced human reference dataset of

protein complexes. Similar to supplementary figure 5, but methodsmaeasured against by the f-score
system. The recall of SiComPre Sim is the highdstenthe —SM strategy to optimize f-score leadthto
high precision and hence to the highest f-scoreOE has a very high precision on a low nhumber of

complexes causing a poor recall.
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Figure 6. Composite scores based on various sour ce data on yeast PPI by several existing methods
compared tothat of SSIComPre-SIM. Here, we are considering protein complexes of siZ&and <= 100.
Reference complexes are retrieved from MIPS, PRisg#s are Collins [10], Krogan, Krogan extendéy,[3
Gavin[31] and Biogrid [32]. Results of other mats@re copied from ClusterOne study, except for
ClusterOne [12], PEWCC [14] and IPCA[9]. In thitusition SiComPre can outperform every other method,
except when using the Biogrid PPI, where PEWCCa{garithm that can deal with high level of noisajla
with Krogan extended where IPCA performs the baghe larger list of PPIs.
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Figure 7. Optimizing f-score and composite score by removing large or small size low abundance
complexes. We identified two different formulas to optimizeethiwo quality measurment scores: i. by
removing large size complexes with low abundane& folumn) and ii. removing small size complexes
with low abundance (right column). We saw that fingt strategy leads to a higher composite scoee (s
color code), while the second one achieve a be#eore.In the text we refer to these strategies as LG and
SM respectively. In the left column we removed lalundance large size complezes, more specifickhlly a
complexes that do not satisfy the formula abundaace or complex size <=vy. It is possible to olveethat

the optimal composite score for x and y are re$pedgt6 and 16. Following this all complexes witlzes
greater than 16 and with abundance lower than & wemoved from the predictions in the case of
SiComPre-LG. The composite score is basically idahin the whole region (4-7, 15-17) when measured
against two different yeast reference databases, e used the same values in the human SiComPre-LG
predictions. The right column shows how f-scoreldde optimized by removing small size complexeth wi
low abundance. Similar as above the formula thme tive kept only complexes with abundance >= x or
complex size >=y, the optimal value for x and ¢ &oth 3 and 3, again the reference database is not
changing this value.. We have also checkecdbre variation with the -LG strategy ansbmposite score
variation with the -SM strategy, but they did nbbw any imporvements (not shown).
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Figure 8. Composite score of various methods after removing non-matching compartment complexes
with referenceto CYCO08 (left) and MIPS (right) yeast databases. Similar to supplementary figure 3, but
in this case the composite score is computed teoving all complexes which have proteins thatrerte
localized in the same compartment and do not comt&mbrane bound proteins. Basically, we removed
every predicted complex that is not consistent witmpartments data[5,29]. In this scenario everianaof
SiComPre outperform any other methods.
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I11. Supplementary Tables Description

Supplementary Table S1: SiComPre predicted budding yeast protein complexestogether with their
predicted abundances

Supplementary Table S2: SiComPre predicted human protein complexestogether with their predicted
abundances

These tables are provided as separate ExcelTies; were generated by the scripts generateCSWgy a
generateCSVhuman.py foundfile S1.

The column headings are abbreviations for:

» ID: ID of the refined complex.

* RC Size: The number of proteins contained in the refinechglex.

» List of proteins: List of proteins contained in the refined comp{gualitative prediction).

* Quantitative prediction: the predicted average abundance of the comgiakjd the number of
simulated complexes associated to this refined temphis value is the average between two
simulations. It is important to remember that thafue should be raised to the square, since in our
simulations we considered only the square rootrafgin complexes.

* Abundance Sim 1: as above, but this is the abundance predictetdfirst simulation. Note that
this value is based on a prediction that use tharegroot of protein abundance, thus one should
calculate the square of this value in order tatigetrue predictionAbundance Sim 2: the
abundance predicted by the second simulations. tNatehis value is based on a prediction that use
the square root of protein abundance, thus onddlsalculate the square of this value in order to
get the true prediction.

* Averagesize of simulated complexes: The average size of simulated complexes assddiatinis
refined complex.

» Best matching reference complex: the reference complex in CYCO08 that has the HEgheerlap
score with the refined complex.

* Matchingthr: The overlap score between reference complexefirted complex.

» Sizeof reference complex: Number of proteins the CYCO08 reference complaxains.

» Fraction of fictitious domains: The fraction of fictitious domains involved inetitomplex.

* Functional enrichment: Functional enrichment calculated with hypergeaiadtinction, without
any correction (low (<0.005 p-values mean the cempbntains proteins with the given annotation
in higher proportion than randomly would be expégit€or yeast we list MIPS functions, while for
human GO annotations.

Supplementary Table S3: SiComPre predictions on the effect of bortezomib on human protein
complexes

This table is provided as separate Excel files.
The column headings mean (see Supplementary tekb8& above for details):

Sheet 1(Normal vs. Bortezomib)
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idref: ID of the refined complex in normal condition.

Size: The number of proteins contained in the refinehglex (normal condition).

List of proteinsin normal condition: List of proteins contained in the refined compiexormal
condition (qualitative prediction).

Quantitative prediction: the predicted average abundance of the complegrmal condition, that

is the number of simulated complexes associat#uigaefined complex. This value is the average
between three simulations. It is important to refnenthat this value should be raised to the square,
since in our simulations we considered only theasguoot of protein complexes.

Std Dev: standard deviation of protein complex abundanes three runs.

List of proteinswith bortezomib: list of proteins contained in the refined compiettieved from

the simulations with Bortezomib that has the beaticiing with the corresponding normal condition
refined complex.

M atching between new and old complex: overlap score between refined complex in normal
condition and after Bortezomib addition.

Quantitative prediction with bortezomib: the predicted average abundance of the comptex af
the addition of Bortezomib (see quantitative predig.

Std Dev with bortezomib: standard deviation of protein complex abundance thwee runs after
Bortezomib addition.

T: This value represents the statistical correlatietween the observation of the complex in hormal
condition and the one after Bortezomib additionfi@asure the correlation we used a t-test and the
critical value considering 3 simulation runs angt@bability of 0.01 is 5.84. Therefore, every
complex above this threshold can be consideredpastarbation induced by the drug.

Best matching refer ence complex with normal condition: the reference complex in CYCO08 that
has the highest overlap score with the normal ¢mmdiefined complex.

Matching thr: The overlap score between reference complex andai condition refined complex.
Size of reference complex: how many proteins CYCO08 reference complex costain

Best matching reference complex with bortezomib: the reference complex in CYCO08 that has the
highest overlap score with the normal conditiomesd complex.

Matching thr: The overlap score between reference complexedimted complex with bortezomib.
Size of reference complex: how many proteins CYCO08 reference complex costain

Functional enrichment: Functional enrichment calculated with hypergeaiadtinction, without

any correction (low (<0.005 p-values mean the cempbntains proteins with the given annotation
in higher proportion than randomly would be expégit€or yeast we list MIPS functions, while for
human GO annotations.

Sheet 2 (New Complexes): refers to descriptiorablet 1 and 2

Supplementary Table 5: Predictions of the fraction of unbound proteins by SComPre simulations of
the yeast and human data in Microsoft Excel format.

This table is provided as separate Excel files.

The column headings mean (see Supplementary tekb8& above for details):

Sheet 1(Human) and Sheet 2(Yeast)

Protein: ID of the protein
20



Fraction of free subunits: fraction of subunits that at the end of simulatése not bounded to any

other protein
Abundance: abundance of the protein in the protein abundaatzsdt
# Interactionsin the final model: number of interactions in the final model in whitle protein is

involved
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V. Tables

Table 1. Protein domainsinteracting with Brotezomib.

List of protein domains identified with domain asiminent from the list of protein interacting with

Bortezomib [18]. Analysis performed by the DAVIDold19].

Pfam Accession

Name

PF00012 Hsp70 protein

PF00070 Pyridine nucleotide-disulphide oxidoredseta
PF00149 Calcineurin-like phosphoesterase

PF00227 Proteasome subunit

PF01851 Proteasome/cyclosome repeat

PF07992 Pyridine nucleotide-disulphide oxidoredseta
PF10584 Proteasome subunit A N-terminal signature
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