
S3 Text: Illustrative examples for condition identifying

non-geometric bursts

In this section, we consider illustrative examples for the condition relating to the
assumption of geometric burst distribution for mRNAs.

Poisson arrival of negative binomial bursts

For Poisson arrival of negative binomial bursts, given by Eqs. (35) and (36) in the
main text, let us first consider the steady state expressions for the moments. Using
Eq. (36) we note that,

〈mb〉 =
pr

1− p
,

〈mb(mb − 1)〉 =
p2r(r + 1)

(p− 1)2
,

〈mb(mb − 1)(mb − 2)〉 = −
p3r(r + 1)(r + 2)

(p− 1)3
. (S3-1)

Plugging these values in Eqs. (2),(4) and (7) of main text and making use of Eq. (35)
for fL(s), we obtain the expression for the steady state moments. For example, mean
number of mRNAs can be written as

〈ms〉 =
kbpr

µm(1− p)
, (S3-2)

its Fano factor as

Fm =
p(r − 1) + 2

2(1− p)
, (S3-3)

and its skewness as

γms
σ3

ms

〈ms〉
=

p(p(r − 1)(2r − 1) + 9r − 3) + 6

6(p− 1)2
. (S3-4)

Using these moments in Eq. (34), we get an explicit expression for Gm:

Gm =
1

3

(

−
p+ 1

pr + 1
+

4

p(r − 1) + 2
+ 2

)

, (S3-5)

as written in the main text. We notice that for the geometric bursts (r = 1) we get
Gm = 1, as expected. However, away from this limit (r = 1), deviations of Gm values
away from 1 can be seen, see Fig. S3-1.
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Figure S3-1. Gm as a function of r for two different values of p, 0.25 (solid line) and
0.75 (dashed line).
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Figure S3-2. Schematic representation for the transcriptional kinetic scheme of two
state model. Gene in OFF state (D0) switches to ON state (D1) with rate α and can
switch back to OFF state with rate β. When the gene is ON, it produces mRNA
bursts with rate km, and mRNAs can then degrade with rate µm.

Two-state random telegraph model

Next, we consider the two-state random telegraph model, a widely used model for gene
expression, Fig. S3-2. Here the gene switches stochastically between its ON and OFF
states: the rate of switching from ON to OFF is α while that from OFF to ON it is β.
Gene in the ON state then produces a single mRNA with rate km, which can degrade
further with rate µm. To verify our condition for geometric bursts, the first step is to
find mRNA moments, mean, Fano factor and skewness. However, as can be seen in
Eqs. (4) and (7), to find these moments the central quantity that needs to be
evaluated is fL(s), the waiting time distribution for the arrival of mRNA bursts in the
Laplace domain. Equivalently, this waiting time distribution translates into finding
the first passage time distribution for the production of mRNA given that gene is in
the active state D1 at time t = 0. If P0(t) and P1(t) denote the probabilities of gene
being in OFF and ON states at time t, respectively, then the first passage time
distribution is given by,

f(t) = kmP1(t), (S3-6)

where the probabilities, P0(t) and P1(t) obey the Master equation

dP0(t)

dt
= βP1(t)− αP0(t),

dP1(t)

dt
= αP0(t)− βP1(t). (S3-7)

The corresponding evolution equation in the Laplace domain is given by

sf0(s)− x0 = βf1(s)− αf0(s),

sf1(s)− y0 = αf0(s)− βf1(s), (S3-8)

where fj(s) stands for the Laplace transform of Pj(t), and x0 and y0 are the initial
values of P0 and P1, respectively. For the process in the Fig. S3-2, where mRNAs are
always produced from the active state, we take P0 = 0 and P1 = 1, and obtain the
Laplace transform of first passage waiting time distributions as

fL(s) =
km(α+ s)

s2 + s(α+ β + km) + αkm
. (S3-9)
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Using this fL(s) in Eqs. (2),(4) and (7), we obtain explicit expressions for the first
three moments of mRNA copy numbers:

〈ms〉 =

(

α

α+ β

)

km

µm

,

Fm = 1 +
βkm

(α+ β)(µm + α+ β)
,

γms
σ3
ms

〈ms〉
=

1

(α+ β)2(µm + α+ β)(2µm + α+ β)

[

α4+

4α3β + β2(km + β)(2km + β) + 2µ2

m(α+ β)2

+3α2β(km + 2β) + 2αβ(−km
2 + 3kmβ + 2β2)

+3µm(α+ β)(2kmβ + (α+ β)2)
]

(S3-10)

Using these values of mean, Fano factor and skewness in Eq. (34), we get Gm = 1, as
expected.

Transcription from two promoter states

Finally, we consider a model as shown in Fig. S3-3. Here D0, D1 and D2 are three
promoter states. Now, instead of having mRNA production from just a single state, as
discussed above, let us assume that mRNAs are produced by two states D1 and D2

with rates km1 and km2, respectively. In the absence of any one of these two
transcriptional routes, bursts are geometrically produced as discussed above. However,
when both transcriptional routes are present we expect deviation from Gm = 1, which
we show in the following.

To start with, let us first denote by Pσ(m, t) as the probability that there are m

number of mRNAs at a time t in the promoter state σ = 0, 1, 2. The evolution of these
probabilities reads as

P0(m, t)

dt
= µm(m+ 1)P0(m+ 1, t) + β1P2(m, t)

− (α+ µmm)P0(m, t),

P1(m, t)

dt
= αP0(m, t) + km1P1(m− 1, t) + µm(m+ 1)

P1(m+ 1, t)− (β2 + km1 + µmm)P1(m, t),

P2(m, t)

dt
= β2P1(m, t) + km2P2(m− 1, t) + µm(m+ 1)

P2(m+ 1, t)− (β1 + km2 + µmm)P2(m, t).

(S3-11)

In the following, we will use this equation to get the first three moments of mRNA in
the steady state. Let us first sum over all possible values of m and use the
normalization

∑

σ Pσ(m) = 1. This leads to

P0 =
β1β2

β1β2 + α(β1 + β2)
,

P1 =
αβ1

β1β2 + α(β1 + β2)
,

P2 =
αβ2

β1β2 + α(β1 + β2)
. (S3-12)
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Next, multiplying Eq. (S3-11) by m and summing over all m, we have

β1〈m〉2 − (µm + α)〈m〉0 = 0,

α〈m〉0 + km1P1 − (µm + β2)〈m〉1 = 0,

β2〈m〉1 + km2P2 − (µm + β1)〈m〉2 = 0, (S3-13)

where 〈m〉σ =
∑

mmPσ(m). These equations are solved to get the mean number of
mRNAs as

〈m〉 =
∑

σ

〈m〉σ =
km1P1 + km2P2

µm

. (S3-14)

Similarly, if we multiply Eq. (S3-11) by m2 and sum over all m, and denote
〈m2〉σ =

∑

m m2Pσ(m), we get

β1〈m
2〉2 + µm〈m〉0 − (2µm + α)〈m2〉0 = 0,

α〈m2〉0 − (β2 + 2µm)〈m2〉1 + (2km1 + µm)〈m〉1

+km1P1 = 0,

β2〈m
2〉1 − (β1 + 2µm)〈m2〉2 + (µm + 2km2)〈m〉2

+km2P2 = 0,

(S3-15)

which can be solved to get 〈m2〉 =
∑

σ〈m
2〉σ. Finally, to get third moment we

multiply Eq. (S3-11) by m3 and sum over m, the resulting equations read

µm

[

−3〈m3〉0 + 3〈m2〉0 − 〈m〉0
]

+ β1〈m
3〉2 − α〈m3〉0 = 0,

α〈m3〉0 + km1

[

3〈m2〉1 + 3〈m〉1 + P1

]

+µm

[

−3〈m3〉1 + 3〈m2〉1 − 〈m〉1
]

− β2〈m
3〉1 = 0,

β2〈m
3〉1 + km2

[

3〈m2〉2 + 3〈m〉2 + P2

]

+µm

[

−3〈m3〉2 + 3〈m2〉2 − 〈m〉2
]

− β1〈m
3〉2 = 0,

which are solved to get the third moment of mRNAs. Once we have the first three
moments, we can evaluate Gm using Eq. (34). The resulting expression is somewhat
complicated, and therefore we just show the result in Fig. S3-3. As can be seen, for a
given set of other parameters, variations of Gm with km2 show that it approaches 1 for
km2 = 0, as expected. However, beyond this significant deviations are visible.
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Figure S3-3. Variation of Gm as a function of transcriptional rate km2 has been
shown for two different values of α, 1(solid line) and 2(dashed line), for the model
(inset). Other parameters are: β1 = 0.5, β2 = 0.25, km1 = 40, µm = 1.
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