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Full model
For completeness, here we present in details the model description and the analytical meth-
ods. In this paper, we use a simple spatial model to study the evolution of resistance to cancer
therapy, particularly in the presence of sanctuary sites with low or no drug concentration. Our
approach is based on branching process theory. The present study focuses only on (single-) drug
resistance arising during treatment, rather than pre-existing resistance prior to treatment. When
cancer patients with metastatic diseases are administered potent drugs, it is often the case that
the drug is not uniformly distributed throughout the body compartments of the cancer patient
due to various factors such as drug penetration problems. This leads to non-homogeneous drug
concentrations across different body compartments, which may harbor small metastatic popula-
tions. These compartments with low drug concentrations, which are insufficient to fully inhibit
the replication of cancer cells, become the sanctuaries from which drug resistant mutants can
emerge. Through migration these resistant mutants can subsequently populate compartments
with high drug concentration, where the sensitive type cannot survive. By such intuitive rea-
soning, we hypothesize that the spatial heterogeneity in drug concentrations can speed up the
evolution of acquired resistance to cancer therapy. In the rest of this supplementary information,
we shall derive mathematical results to investigate this hypothesis. Our theoretical results shed
new light onto the emergence of drug resistance and treatment failure of cancer patients with
metastatic diseases.

Let us consider a spatial compartment model of metastatic diseases. There are M compart-
ments in total and the drug concentration in each compartment i is denoted by Di. We restrict
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our analysis on spatially heterogeneous drug concentrations, but without time-changing con-
centration fluctuations. Metastatic cancer cells have already acquired motility and are assumed
to migrate between compartments with rate v. The effect of the drug can either be cytostatic
inhibiting cell growth and division or be cytotoxic killing cells directly, or both. Without loss of
generality, we assume here that the drug inhibits cell growth. Reproduction is subject to muta-
tion. Upon division, one of the two daughter cells mutates with rate u. By acquiring step-wise
point mutations, the mutant becomes more and more adapted to drug environments and can
eventually survive in high-concentration compartments. Denote by i the genotype of a cancer
cell if it has acquired i point mutations. The replication rate of a cancer cell, bi j, is determined
by its genotype i and spatial location j as follows,

bi j = β j
1 − is

1 +
[ D j

ρiIC50

]m . (1)

Here we use a Hill function for the drug response curve. β j is the division rate of a wild type cell
in compartment j in the absence of drug, s is the cost of mutation in the absence of drug, IC50 is
the drug concentration that is needed to inhibit cell growth by one half of its original rate, ρ is
the fold increase in IC50 per mutation, and m determines the steepness of the Hill function. We
note that drug mutations are deleterious in the absence of drugs. Thus the replication rate of a
mutant with genotype i and in compartment j is (1 − is)β j in the absence of drugs, whereas its
IC50 is increased to ρiIC50 in the presence of drugs. Throughout this supplementary information,
unless stated otherwise, the death rate of a cancer cell with genotype i within compartment j,
di j, is all the same across compartment and equal to that of the wild type in the absence of drugs,
di j = α j = d0.

The migration pathway is specified by the underlying connections between compartments.
For simplicity, we consider two different schemes of migration: local migration versus global
migration. Local migration means that compartments are situated on a “ring” where a cancer
cell can only migrate to the two nearest neighbor compartments with equal probability v/2.
In contrast, global migration means compartments are fully connected where a cancer cell is
allowed to migrate from one compartment to any other one with equal probability v/(M −
1). We restrict our subsequent analysis to these two foregoing migration patterns, though it is
straightforward to extend it to more complicated migration patterns in our mathematical model.

In what follows, we shall use a continuous-time multi-type branching process to describe
resistance evolution.

Analysis
As for multi-type branching process, we first need to construct the appropriate type space using
the combination of genotype gi ∈ {0, 1, · · · , n−1} and compartment location l j ∈ {0, 1, · · · ,M−
1}. Thus a cell’s type can be denoted by two-bit strings gil j ∈ {0, 1, · · · , n−1}×{0, 1, · · · ,M−1}
and thus there are n × M different types. For example, a cell with “11”-type means that this
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cell has accumulated 1 point mutation and is located in compartment 1. Therefore, a cell’s
type, notated by its genotype and spatial location, can change as results of genetic mutation or
migration.

Next let us introduce the probability generating functions. Denote by Fi j(X; t) the prob-
ability generating function for the lineages at time t initiated by a single i j-type cell, where
X = [x00, . . . , xn−1,M−1] denotes the vector of dummy variables with elements xi j representing
each i j-type of cells. During an infinitesimal time interval ∆t, with probability bi j(1 − u)∆t an
i j-type cell gives birth to two identical daughter cells, with probability bi ju∆t it gives rise to an
identical offspring and a mutated offspring, with probability v∆t it migrates to another compart-
ment, with probability di j∆t it dies, and with probability 1 − (bi j + di j + v)∆t nothing changes.
We can use the probability generating function approach to account for what can happen to an
i j-type cell during an infinitesimal time interval ∆t,

fi j(X; ∆t) = di j +bi j(1−u)∆tx2
i j +bi ju∆txi jx(i+1) j +

v
M − 1

∆t
∑
k, j

xik + [1− (bi j +di j +v)∆t]xi j. (2)

Using the multiplicative property of branching process (the independency of each individual
lineage), the generating function Fi j(X; t + ∆t) satisfies the recursive backward equation,

Fi j(X; t + ∆t) = fi j(F; ∆t), (3)

where F is the vector of the probability generating functions with elements Fi j(X; t). We obtain
the following backward equation for global migration (0 ≤ i < n − 1, 0 ≤ j ≤ M − 1).

∂Fi j(X; t)
∂t

= lim
∆t→0

fi j(F(t); ∆t) − Fi j(X; t)
∆t

= di j + bi j(1 − u)F2
i j + bi juFi jF(i+1) j +

v
M − 1

∑
k, j

Fik − (bi j + di j + v)Fi j. (4)

Since we do not consider more than i = n − 1 point mutations, for i = n − 1 we have

∂Fi j(X; t)
∂t

= di j + bi jF2
i j +

v
M − 1

∑
k, j

Fik − (bi j + di j + v)Fi j. (5)

The initial condition for these ODE’s is Fi j(X; 0) = xi j for i = 0, . . . , n− 1 and j = 0, . . . ,M − 1.
For any given profile of the initial numbers of cells, N = {Ni j}, the corresponding probability
generating function FN is a power compound of Fi j

FN =
∏

i, j

Fi j(X; t)Ni j . (6)

Analogously with Eq. (4), we can derive the backward equation for local migration,

∂Fi j(X; t)
∂t

= di j+bi j(1−u)F2
i j+bi juFi jF(i+1) j+

v
2

Fi[( j−1+M)%M]+
v
2

Fi[( j+1)%M]−(bi j+di j+v)Fi j. (7)
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In the above equation, the subscripts [( j − 1 + M)%M] and [( j + 1)%M] account for the two
neighbor compartments the cell may migrate to.

In the following unless stated otherwise, we have di j = d0 for all types of cells, while bi j

depends on the drug concentration in compartment j as in Eq. (1). The fate of a i j-type cell
can either go extinct in a relatively short time or successfully establish surviving lineages with
expanding populations. The extinction probability, which is the opposite of escape probability,
can be obtained by solving the fixed points of the ODE’s given above. We can also calculate
the probability that there is no evolved fully resistant strain in any compartment by time t,
conditional on non-extinction.

For arbitrary number of genotypes and arbitrary number of compartments, we cannot find
closed form probability generating functions for these nonlinear ODE’s. To circumvent this
difficulty, we rely on numerical ODE solvers to obtain the quantities of interest. For instance,
if we solve the above nonlinear ODE’s with the initial condition xi j = 0, we can obtain the
extinction probability Fi j(0; t) for each i j-type cell at time t. For t → ∞, Fi j(0; t) converges to
the steady equilibrium value (i.e., the smallest of all admissible fixed points). Using the initial
condition XnoR = [xi j] where xi j = 1 for i < n − 1 and xi j = 0 for i = n − 1, the conditional
probability PnoR(t) that there is no evolved fully resistant strain in any compartment by time t,
starting with an i j-type cell, can be calculated as,

PnoR(t) =
Fi j(XnoR; t) − Fi j(0;∞)

1 − Fi j(0;∞)
. (8)

In general, for any given profile of the initial numbers of cells, N = {Ni j}, the extinction
probability PE(t) at time t is given by

PE(t) =
∏

i, j

Fi j(0; t)Ni j . (9)

The conditional probability PnoR(t) is given by

PnoR(t) =

∏
i, j Fi j(XnoR; t)Ni j −

∏
i, j Fi j(0;∞)Ni j

1 −
∏

i, j Fi j(0;∞)Ni j
. (10)

Simple model
For the simple model with 2 genotypes and 2 compartments, we are able to derive closed-form
approximations for special cases. The backward equations are as follows,

∂F00

∂t
= d00 + b00(1 − u)F2

00 + b00uF00F10 + vF01 − (d00 + b00 + v)F00

∂F01

∂t
= d01 + b01(1 − u)F2

01 + b01uF01F11 + vF00 − (d01 + b01 + v)F01

∂F10

∂t
= d10 + b10F2

10 + vF11 − (d10 + b10 + v)F10

∂F11

∂t
= d11 + b11F2

11 + vF10 − (d11 + b11 + v)F11. (11)
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These are coupled nonlinear Riccati equations, for which we do not have closed-form explicit
solutions.

For simplicity, let us further assume dichotomous drug environments: compartment 0 is drug
free, while compartment 1 is distributed with a drug that inhibits cell growth. We have di j = d0.
In the drug-free compartment 0, both sensitive and resistant cells have supercritical replication
potential in drug free compartment, but resistant cells have slightly lower replication rates than
sensitive type due to the cost of the resistant mutation. We have b00 > d00, b10 > d10, and
b10 < b00. In the drug-containing compartment 1, sensitive cells have a subcritical replication
potential while resistant cells still have a supercritical replication potential. We have b01 < d01,
b11 > d11, and b11 > b01.

For such a fitness landscape, the drug-free compartment provides far more favorable condi-
tion for breeding resistance than the drug-containing compartment. Therefore, the likely origin
for treatment failure, these resistant cells that populate the drug-present compartment, should
be attributed to the “mutation-migration” pathway than the “migration-mutation” pathway. In
other words, it is less likely that resistance evolves in situ in the drug-containing compartment
than that resistance mutants are originated from the drug-free compartment and then migrate to
the drug-containing compartment.

Drug-environment-dependent escape
To verify these arguments above, let us first calculate and compare the likelihood of obtaining an
escape mutation within one separate compartment (without any migration at all). For simplicity,
the compartment is only seeded with a single sensitive cell. Denote by b0 and b1 the division rate
of sensitive cells and resistant ones in that compartment. The death rate of the two types of cells
is the same, d0 = d1. We have b0 > b1 > d0 for compartments with low concentrations, whereas
b0 < d0 < b1 for compartments with high concentrations. Let f 0(x, y, t) denote the probability
generating function for the lineages starting with a single sensitive cell, and let f 1(x, y, t) denote
the probability generating function for the lineages starting with a single resistant cell. We have
the following differential equations:

d f 0

dt
= d0 + b0(1 − u) f 0 f 0 + b0u f 0 f 1 − (b0 + d0) f 0, (12)

d f 1

dt
= d1 + b1 f 1 f 1 − (b1 + d1) f 1. (13)

The initial condition is f 0(x, y, 0) = x and f 1(x, y, 0) = y.

b0 > b1 > d0

For sufficiently small mutation rates u � 1, we can derive a closed form approximation to the
equations above. Let ri = bi − di denote the net growth rate of type-i cells, i = 0, 1. We have
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r0 > r1 > 0. Neglecting the loss of sensitive cells due to rare mutations, we have

d f 0(x, t)
dt

= d0 + b0 f 0 f 0 − (b0 + d0) f 0. (14)

This ODE above is explicitly soluble, and we obtain:

f 0(x, t) =
b0x − d0 − d0(x − 1)er0t

b0x − d0 − b0(x − 1)er0t . (15)

Denote by X0(t) the number of sensitive cells at time t. Previous results show that X0(t)e−r0t is a
non-negative martingale and X0(t)e−r0t → W0 for t → ∞. The Laplace transform of W0 is given
by

Ee−θW0 = E
(
e−θe

−r0t)X0
= f 0(e−θe

−r0t
, t). (16)

For t → ∞, using e−θe
−r0t
− 1 ≈ −θe−r0t, we obtain

Ee−θW0 ≈
r0 + d0θ

r0 + b0θ
=

d0

b0
+ (1 −

d0

b0
)

1

1 + b0
r0
θ
. (17)

Accordingly, we obtain the limiting distribution of W0 for t → ∞ as follows.

W0 =
d0

b0
δ0 + (1 −

d0

b0
)Exponential(

r0

b0
), (18)

where δ0 is a point mass at zero (corresponding to extinction), and Exponential( r0
b0

) is an expo-
nential distribution with the exponent r0

b0
. It is easy to see that, conditional on non-extinction,

X0(t)e−r0t → V0 = Exponential( r0
b0

). Thus the Laplace transform of V0 is

Ee−θV0 =
1

1 + b0
r0
θ
. (19)

The rate at which resistant mutants arise is ub0X0(t). Hence the conditional probability that
the arrival time of the first mutant τ1 > t is

P(τ1 > t|X0(t) > 0) = Ee−
∫ t

0 ub0V0er0 sds

=
1

1 +
ub2

0
r2

0
(er0t − 1)

≈
1

1 +
ub2

0
r2

0
er0t

. (20)

The median arrival time

t 1
2

=
log(r2

0/ub2
0)

r0
.

We can see that t 1
2

is monotonically decreasing with increasing b0 (u � 1). That is, the less
harsh the compartment is (b0 ↑), the sooner resistant mutants arise (t 1

2
↓). In this sense, com-

partments with lower drug concentrations are more likely the breeding ground for resistance,
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since the replication of sensitive cells is less affected than in compartments with higher drug
concentrations.

For small mutation rate u � 1, the escape probability P1 that a single sensitive cell estab-
lishes lineages without going extinction is approximately

P1 ≈
r0

b0
− u

d0(b0d1 − b1d0)
b0b1r0

. (21)

b0 < d0 < b1

In this unfavorable case, sensitive cells do not have a chance to survive but resistant cells do.
The approximation method used above does not work here, since the branching process of
sensitive cells is subcritical. To establish surviving lineages, sensitive cells must evolve resistant
mutation right before quickly dying out. We cannot find a closed form for the arrival time of the
first mutant for this case, but it is easy to see that if the mutant does arise (though with a lower
chance), it takes much longer time due to the smaller birth rate than in benign environments.
The escape probability of a single sensitive cell is approximately

P1 ≈ −u
b0r1

b1r0
, (22)

which is much smaller than Eq.(21). Moreover, we should note that the escape probability P1 is
of the order

√
u if sensitive cells are almost critical |r0| → 0:

P1 ≈

√
u

r1

b1
. (23)

Competing pathways to the emergence of resistance
Returning to the simple model introduced above, we are now primarily concerned with which
pathway leads faster to resistant cells that populate the drug-present compartment. To this
end, we compare two distinct pathways. The migration-mutation pathway: sensitive cells first
migrate from the drug-free compartment to the drug-present compartment, and then acquire
resistance in situ. The mutation-migration pathway: sensitive cells acquire resistant mutation
in the drug-free compartment, followed by migration to the drug-present compartment.

As shown above, we cannot obtain closed-from solutions for this four-type branching pro-
cess. To simplify our mathematical derivations, let us consider unidirectional emigration flow
only from the drug-free compartment to the drug-present compartment. To compare which
pathway is faster, let us further artificially separate these two pathways, making only one path-
way at work at a time, instead of considering them simultaneously. In this way, each pathway
can seen as a three-type branching process:

type 0
µ0
−→ type 1

µ1
−→ type 2.
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For the migration-mutation pathway, µ0 = v and µ1 = ub01; for the mutation-migration pathway,
µ0 = ub00 and µ1 = v. The difference of the fitness landscape between these two pathways lies
in the intermediate type 1, namely, the division rate b01 of sensitive cells in the drug-present
compartment versus the division rate b10 of resistant cells in the drug-free compartment. It is
therefore useful to first study a general three-type branching process and then obtain the results
for each pathway by substituting the specific fitness landscape for each pathway.

For rare mutations (u � 1) and low migration rates (v � 1), we are able to derive explicit
closed-form approximations for the conditional probability of no type 2 cells by time t. Let bi

and di be the birth and death rate of type i cells, i = 0, 1, 2. Let ri = bi−di be the net growth rate
of type i cells. We have r0 > 0, r2 > 0, and r1 < r0. Conditional on non-extinction, the number
of type 0 cells at time t is given by

X0(t) = V0er0t (24)

Because type 1 is less fit than type 0 (r1 < r0), we can approximate the number of type 1 cells
at time t as

X1(t) = µ0

∫ t

0
V0er0 ser1(t−s)ds = µ0V0

er0t[1 − e(r1−r0)t]
r0 − r1

∼ µ0V0
er0t

r0 − r1
, (25)

where x(t) ∼ y(t) means x(t)/y(t)→ 1 for large t.
The conditional probability that there are no surviving type 2 cells by time t is

P(X2(t) = 0|X0(t) > 0) = E exp[−µ1

∫ t

0
X1(s)

r2

b2 − d2e−r2(t−s) ds]

= E exp[−µ0µ1V0

∫ t

0

er0 s

r0 − r1

r2

b2 − d2e−r2(t−s) ds]

=
1

1 + θ2(t) b0
r0

, (26)

where the integral θ2(t) = µ0µ1
r2

r0−r1

∫ t

0
er0 s

b2−d2e−r2(t−s) ds.
Substituting the fitness landscape of each pathway, we find a simple condition for the

mutation-migration pathway faster than the migration-mutation pathway in leading to surviving
resistant cells in the drug-containing compartment if the follow inequality holds:

b00

b00 − d00 − (b10 − d10)
>

b01

b00 − d00 − (b01 − d01)
. (27)

Concerning cytostatic drugs that inhibits cell division, we have d00 = d10 = d01 = d11 = d0,
b00 = b0, b10 = (1 − s)b0 and b01 = (1 − δ)b0. s denotes the fitness cost of resistant mutation in
the absence of drugs, and δ denotes the fitness cost of sensitive cells in the presence of drugs.
Then the above condition simplifies to

δ >
s

1 + s
. (28)
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For cells in compartments with potent drugs and with sufficiently high drug concentrations, we
have δ > s. More generally, the emergence of resistance is more contingent on the mutation-
migration pathway than the migration-mutation pathway, if the difference of drug concentration
between two neighboring compartments leads to the landscape satisfying the inequality (27).

Numerical results
In what follows, we report the numerical results on the full model. To avoid boundary problems,
we consider generic, symmetric spatial distributions of drug concentrations over compartments,
according to a rescaled Normal distribution such that the degree of heterogeneity can be tuned
by the variance of the distribution while keeping the total sum of concentrations constant. We
compare the extinction probabilities and the time to resistance for sensitive cells initially lo-
cated in each compartment, with varying migration rate and the spatial heterogeneity in drug
concentrations.

The results are consistent with those reported in the main text (Figs. S5 and S6). Sanctuary
sites are compartments with low drug concentration, which are responsible for producing the
resistance that populates compartments with high drug concentration. Selection for resistance
is more contingent on the mutation-migration pathway than the migration-mutation pathway,
particularly in the presence of sanctuary sites. Moreover, only for small migration rates below
a certain threshold does the spatial heterogeneity in drug concentrations help speed up the re-
sistance evolution. However, excessively high migration rates actually slow down resistance
emergence, as the role of compartment structure is diminished by frequent migration.

Furthermore, we observe interesting results when comparing local migration to global mi-
gration. Both the extinction probability and the time to resistance depend more sensitively on
migration rate for global migration than for local migration (Fig. S5). This is because global
migration favors the dissemination of resistance all over the place, whereas local migration con-
strains the migration within neighboring compartments with reduced drug difference such that
accruing one point mutation is sufficient to offset the increasing drug concentration. As a con-
sequence, resistance evolves much faster for local migration than global migration, particularly
for sensitive cells located at the sanctuary sites with low drug concentrations. On the contrary,
the escape probability of sensitive cells located in the compartments with high concentrations
is hampered more by local migration than by global migration. In this case, local migration
limits its dispersal range, while global migration increases the chance of moving to sanctuary
sites thus leading to greater escape probabilities. More specifically, compared to global migra-
tion, local migration speeds up the evolution of resistance for sensitive cells initially located at
sanctuary sites, while delaying the evolution of resistance for sensitive cells initially located at
harsh compartments with high levels of drugs. Regarding the latter case, moreover, there exists
an optimal intermediate global migration rate with which the time to resistance is minimal.

Sanctuary sites for sensitive cells result when varying from homogeneous drug distributions
to increasingly heterogeneous drug concentrations across spatial compartments. It is obvious
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that compartments with low concentrations become the shelter for sensitive cells and thus pro-
vide benign condition for breeding resistance that can be selected for in compartments with
excessively high concentrations (Fig. S6). Local migration takes less time to evolve resistance
than global migration, if these cells are initially located at the sanctuaries. Opposite results are
obtained if these cells are initially located at harsh compartments. Under local migration, there
exists an optimal level of heterogeneity in drug concentrations that most delays the emergence
of resistance. In contrast, increasing the spatial heterogeneity in drug concentrations helps pro-
long the time to resistance under global migration.

Altogether, these results confirm that our conclusions derived from the simple model in
the main text are robust with respect to model extensions and varying model parameters. In
addition, the scheme of migration plays an important role in the evolution of acquired resistance.
However, future studies are needed in order to characterize, and eventually manipulate, the
migration routes for metastatic cells. We think that constraining escape route of metastatic cells
to sanctuary sites and limiting dissemination of evolved metastatic cells from sanctuary sites
are vital to eliminate disseminated cancer.
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