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S.1 Derivation of the uncoupled dynamics

The hazard function of the uncoupled reaction network corresponding to the environmental process Z is
obtained through the innovation theorem for counting processes [1, 2] and ref. [17] in the main text. For
static environments, such reaction hazards have been derived in (ref. [9] in the main text and [9]) but an
equivalent calculation is possible in the case of fluctuating environments. For completeness, we provide
a simple derivation in the following. Conceptually, the construction of such a process can be understood
as a marginalization of the process dynamics with respect to Z. The critical point is to anticipate that
the marginal process will depend on the full process history Xt. We can then write the marginal jump
probability of the k-th reaction as

P (X(t+ ∆t) = x+ νk | Xt) =

∫
P (X(t+ ∆t) = x+ νk | Z(t) = z,X(t) = x)p(Z(t) = z | Xt)dz

=

∫
∆tck(z)gk(x)p(Z(t) = z | Xt)dz

= ∆tE [ck(Z(t)) | Xt] gk(x)

= λk(Xt)∆t.

(1)

S.2 Derivation of the normalized filtering distribution

Given the posterior distribution over Z at time t, the one-step posterior for a sufficiently small ∆t can
be generally written as (ref. [22] in the main text)

p(Z(t+ ∆t) = z | ∆Rk = {0, 1},Xt) =
p(∆Rk = {0, 1} | Z(t+ ∆t) = z)p(Z(t+ ∆t) = z | Xt)∑∞
z=0 p(∆Rk = {0, 1} | Z(t+ ∆t) = z)p(Z(t+ ∆t) = z | Xt)

,

(2)
where ∆Rk indicates whether a reaction has happened in ∆t or not. The likelihood term in (2) is given
by the Poissonian observation model with propensity hk(X(t), z) = ckzgk(X(t)), i.e.,

p(∆Rk = 0 | Z(t+ ∆t) = z) = e−hk(X(t),z)∆t (3)

p(∆Rk = 1 | Z(t+ ∆t) = z) = ∆thk(X(t), z)e−hk(X(t),z)∆t. (4)

For small ∆t, we can write the one-step prior distribution as

p(Z(t+ ∆t) = z | Xt) ≈ p(Z(t) = z | Xt) + ∆tAp(Z(t) = z | Xt). (5)

Hence, in case no reaction happens, we obtain

p(Z(t+ ∆t) = z | ∆Rk = 0,Xt) =
e−ckzgk(X(t))∆t [p(Z(t) = z | Xt) + ∆tAp(Z(t) = z | Xt)]∑∞

z=0 e
−ckzgk(X(t))∆tp(Z(t+ ∆t) = z | Xt)

=
e−ckzgk(X(t))∆tp(Z(t) = z | Xt)∑∞

z=0 e
−ckzgk(X(t))∆tp(Z(t+ ∆t) = z | Xt)

+
∆tAp(Z(t) = z | Xt)∑∞

z=0 e
−ckzgk(X(t))∆tp(Z(t+ ∆t) = z | Xt)

(6)
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Taking the limit yields the temporal change in p, i.e.,

lim
∆t→0

p(Z(t+ ∆t) = z | ∆Rk = 0,Xt)− p(Z(t) = z | Xt)

∆t

= lim
∆t→0

p(Z(t) = z | Xt)
[
e−ckzgk(X(t))∆t −

∑∞
z=0 e

−ckzgk(X(t))∆tp(Z(t+ ∆t) = z | Xt)
]

∆t
∑∞
z=0 e

−ckzgk(X(t))∆tp(Z(t+ ∆t) = z | Xt)

+ lim
∆t→0

Ap(Z(t) = z | Xt)∑∞
z=0 e

−ckzgk(X(t))∆tp(Z(t+ ∆t) = z | Xt)

= p(Z(t) = z | Xt) [−ckzgk(X(t)) + ckgk(X(t))E [Z(t) | Xt]] +Ap(Z(t) = z | Xt)

= Ap(Z(t) = z | Xt) + ckgk(X(t)) [z − E [Z(t) | Xt]] p(Z(t) = z | Xt).

(7)

Using a simpler notation, we can write the differential change in case no reaction happens as

ṗ = Ap− ckgk(X(t)) [z −M1] p, (8)

with M1 as the posterior expectation of Z. If one reaction happens, we can write the one-step posterior
distribution as

p(Z(t+ ∆t) = z | ∆Rk = 1,Xt) =
ckzgk(X(t))e−ckzgk(X(t))∆tp(Z(t) = z | Xt)∑∞

z=0 ckzgk(X(t))e−ckzgk(X(t))∆tp(Z(t+ ∆t) = z | Xt)

+
∆tA(p(Z(t) = z | Xt))∑∞

z=0 ckzgk(X(t))e−ckzgk(X(t))∆tp(Z(t+ ∆t) = z | Xt)
.

(9)

Since the posterior jumps instantaneously when the reaction happens, the derivatives are not defined.
Instead, we compute the increments if ∆t approaches zero. This yields

lim
∆t→0

p(Z(t+ ∆t) = z | ∆Rk = 1,Xt)− p(Z(t) = z | Xt)

= lim
∆t→0

ckzgk(X(t))e−ckzgk(X(t))∆tp(Z(t) = z | Xt)∑∞
z=0 ckzgk(X(t))e−ckzgk(X(t))∆tp(Z(t+ ∆t) = z | Xt)

− p(Z(t) = z | Xt)

= lim
∆t→0

ze−ckzgk(X(t))∆tp(Z(t) = z | Xt)∑∞
z=0 ze

−ckzgk(X(t))∆tp(Z(t+ ∆t) = z | Xt)
− p(Z(t) = z | Xt)

=

[
z −M1

M1

]
p

(10)

Finally, the overall time-evolution of p is given by the stochastic equation

dp =
(
Ap− ckgk(X(t)) [z −M1] p

)
dt+

[
z −M1

M1

]
pdRk. (11)

Note that this equation depends on the conditional mean of Z, such that it becomes tedious to solve
directly. In contrast, the unnormalized density provided above can be solved and normalized in a
subsequent step. Nevertheless, the normalized distribution allows a simple computation of the posterior
moments of Z.

S.3 Approximate moment dynamics

In cases where the conditional process Z(t) | Xt cannot be fully characterized by a finite number of
moments, one can employ suitable approximations to obtain a closed moment system (e.g., ref. [24]
in the main text). Such schemes – commonly referred to as moment-closure – aim to approximate the
moment dynamics of a system using certain distributional assumptions. It has been shown that moment-
closure techniques may yield reasonable approximation performances in several practical scenarios (see
e.g., ref. [8] in the main text). In other cases – however – they might not be able to correctly capture the
desired moments and moreover, there is no principled way of assessing the quality of a particular closure
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“beforehand”, i.e., without performing extensive stochastic simulations. Those problems are inherent
if one aims to approximate Z(t) without including further information. In contrast, the conditional
process Z(t) | Xt turns out to be more straight-forward to approximate. This stems from the fact
that due to the conditioning, the distribution over Z(t) will generally be more informative than the
unconditional distribution. This can be understood via Bayes’ theorem: a complicated and broad prior
distribution is significantly harder to approximate by a simple distribution (e.g., a Gaussian) than a
posterior distribution that is obtained after observing data. The more data (i.e., information) is included,
the tighter and symmetric it is. While such arguments appear largely qualitative, they can be rigorously
formulated using concepts from asymptotic theory such as large sample properties of Bayesian estimators
[4]. In fact, our simulations indicated that the approximation accuracy of the uncoupled dynamics often
shows little sensitivity with respect to the particular closure function. For univariate environments, we
consistently used the Gamma-type of closure described in the main text. For the multivariate case, we
applied the second-order zero-cumulant closure in which the third order moments are approximated by
the first- and second-order moments as

E [ABC] = E [A]E [BC] + E [B]E [AC] + E [C]E [AB]− 2E [A]E [B]E [C] . (12)

S.4 Derivation of the effective noise

We assume now that Z(t) modulates X(t) through a zero-order reaction with index k. We have demon-
strated in the main text that at any time t the total variance of Z(t) splits up into two terms: (i) the
suppressed noise and (ii) the effective noise. In order to quantify the former, we rewrite the conditional
moments in terms of central instead of non-central moments. In particular, we obtain for the mean and
variance

dM1(t) =
(
D1(t)− ckS2(t)

)
dt+

S2(t)

M1(t)
dRk(t)

dS2(t) =
(
D̃2(t)− ckS3(t)

)
dt+

[
S3(t)

M1(t)
− S2

2(t)

M2
1 (t)

]
dRk(t)

(13)

with S2(t) as the conditional variance Var [Z(t) | Xt] and D̃2(t) as the unconditional central moment
dynamics of order two. We next need to compute the expected value of S2(t). Decomposing dRk(t) into
a predictable part and a martingale, i.e., dRk(t) = ckM1(t)dt+ dQk(t), we can rewrite Eq.13 as

dM1(t) = D1(t)dt+
S2(t)

M1(t)
dQk(t)

dS2(t) =

(
D̃2(t)− ck

S2
2(t)

M1(t)

)
dt+

[
S3(t)

M1(t)
− S2

2(t)

M2
1 (t)

]
dQk(t)

(14)

Taking the expectation of Eq.14, all terms involving dQk(t) become zero and we obtain

d

dt
E [M1(t)] = E [D1(t)]

d

dt
E [S2(t)] = E

[
D̃2(t)

]
− ckE

[
S2

2(t)

M1(t)

]
.

(15)

Although eq. (15) is fully general, it might be hard to evaluate the expectation E
[
S2

2(t)/M1(t)
]

(and

possible other further terms stemming from prior dynamics D̃2(t)).
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S.4.1 Effective noise of a Cox-Ingersoll-Ross process

Let us consider the case where Z(t) follows a CIR process as defined in the main text. The expected
central moments are then governed by

d

dt
E [M1(t)] = θ(µ− E [M1(t)])dt

d

dt
E [S2(t)] = −2θE [S2(t)] + σ2

ZE [M1(t)]− ckE
[
S2

2(t)

M1(t)

]
.

(16)

The only term that remains to be specified is the expectation E
[
S2

2(t)/M1(t)
]
. Fortunately, it turns

out that for a Gamma-type conditional distribution, this expectation simplifies to E
[
S2

2(t)/M1(t)
]

=

E [S2(t)]2 /E [M1(t)]. A derivation of that fact can be performed using the extension of Ito’s lemma for
counting processes. However, since it involves a multitude of technicalities that are not in the scope
of this study, we skip the individual steps. Instead we provide a heuristic but substantially simpler
explanation based on the fact that the CIR process is conjugate to the Poissonian reaction channel. In
particular, we consider the case of a Gamma distributed random variable Z ∼ G(α, β), with α and β as
shape- and inverse scale parameters. The random variable is observed through a Poissonian measurement
X | Z = z ∼ Poiss(z). After observing X, the conditional distribution over Z is given by

p(z | X = x) = G(z;α+ x, β + 1). (17)

Furthermore, the conditional mean and variance are

M1 =
α+ x

β + 1

S2 =
α+ x

(β + 1)2

(18)

and the ratio thereof becomes
S2

2

M1
=

α+ x

(β + 1)3
. (19)

Taking the expectation with respect to x then yields

S2
2

M1
=
α+ E [X]

(β + 1)3
. (20)

We now compare this expression to E [S2]2 /E [M1]. In particular, we obtain for the two expecta-
tions

E [M1] =
α+ E [X]

β + 1

E [S2] =
α+ E [X]

(β + 1)2
,

(21)

and therefore, the both expressions will coincide. The expected moments – and hence the suppressed
noise then can be found by solving

d

dt
E [M1(t)] = θ(µ− E [M1(t)])dt

d

dt
E [S2(t)] = −2θE [S2(t)] + σ2

ZE [M1(t)]− ck
E [S2(t)]2

E [M1(t)]
.

(22)

In order to find an expression at stationarity, we set the l.h.s. to zero and solve for M1 and S2.

M∞1 = µ

S∞2 =

√
µ2(ckσ2

Z + θ2)− µθ
ck

.
(23)
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Hence, the suppressed and effective noise terms of Z(t) at stationarity are given by

E [Var [Z(t) | Xt]] =

√
µ2(ckσ2

Z + θ2)− µθ
ck

Var [E [Z(t) | Xt]] = Var [Z(t)]−
√
µ2(ckσ2

Z + θ2)− µθ
ck

.

(24)

Furthermore, the relative effective noise is found be dividing the effective noise by the total noise,
i.e.,

Var [E [Z(t) | Xt]]

Var [Z(t)]
= 1 + 2

v2

ck

(
1−

√
ck
v2

+ 1

)
, (25)

with v = θ/σZ as the normalized timescale of Z(t).

S.5 Generalized master equations

Since the uncoupled process is non-Markovian, it does not satisfy a conventional master equation. Never-
theless, it can be described by a non-Markovian modification thereof, giving rise to a generalized master
equation (GME). Typically, a GME is given in the form of an integro-differential equation, where the
integral part stems from a time-convolution representing the memory effects of the system1. In some
cases, such master equations may be given in a time-convolutionless form [8], which are typically more
convenient to handle in practice. While GMEs are barely used in the context of biology, they are
frequently applied in the field of quantum- and statistical mechanics [8, 10]. In the following we will
use several concepts from that field to formulate a GME for the uncoupled dynamics. While a fully
general description is yet to be developed, we consider the case where non-Markovian effects arise due
to non-exponential and possibly time-dependent waiting-time distributions. However, the latter do not
explicitly depend on the entire process history Xt. This covers several relevant scenarios such as the
master equation associated with the SNA.

Let us consider waiting-times W1, . . . ,WN , each of which is associated with a particular reaction channel.
We assume that only the k-th reaction is modulated by the environmental network Z. Accordingly, only
the k-th reaction will be associated with a non-exponential waiting-time distribution P (Wk < w | Xt) =
P (Wk < w | X(t) = x) and corresponding density pk(w | x, t). For all other reaction channels we assume
exponential waiting-time distributions P (Wi < w | X(t) = x) = 1 − exp(−hi(x, ci)w) and associated
densities pi(w | x) = hi(x, ci) exp(−hi(x, ci)w) for i 6= k. In the general case, the k-th waiting-time
distribution follows

P (Wk < w | Xt) = 1− e−
∫w
0 λ(X−

t+T
)dT , (26)

with λ(X−t+w) = ciE
[
Z(t+ w) | X−t+w

]
, where X−t+w extends Xt by a time-interval w assuming that no

reaction of type k happens in w. The corresponding density is given by

pk(w | Xt) = λ(X−t+w)e−
∫w
0 λ(X−

t+T
)dT . (27)

Restricting the waiting-time distribution to only depend on the current state X(t) = x and time t, we
further have that

pk(w | x, t) = λ(x, t+ w)e−
∫w
0 λ(x,t+T )dT . (28)

Assuming that the process is in state x at time t, the next reaction and its firing time are determined
by picking the minimum of the randomly drawn waiting-times W1, . . . ,WN , i.e.,

J = argmin
i=1,...,N

Wi

and W = Wj ,
(29)

1In contrast, Markovian dynamics are known to be memoryless.
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with W as the waiting-time until the next reaction fires. Accordingly, we can define the probability that
the next reaction will fire between t and t+ w as

P (W < w | X(t) = x) = P (min(W1, . . . ,WN ) < w | X(t) = x)

= 1− P (min(W1, . . . ,WN ) > w | X(t) = x)

= 1−
N∏
i=1

P (Wi > w | X(t) = x).

(30)

and the corresponding density will be denoted by p(w | x, t). We remark that if all N waiting-times
stem from an exponential distribution (i.e., if X is Markovian), also their minimum will be exponentially
distributed. The probability of the next reaction at time w to be of type k is given by

Qj(x, t, w) = P (X(t+ w) = x+ νj | X(t) = x,W = w)

=
P (Wj ∈ [w + dw) | X(t) = x)

∏
i 6=j P (Wi > w | X(t) = x)

P (W ∈ [w + dw) | X(t) = x)

=
pj(w | x, t)

∏
i 6=j P (Wi > w | X(t) = x)

p(w | x, t) ,

(31)

where pj(w | x, t) = pj(w | x) if j 6= k. Plugging in the waiting-time distribution from (28), we obtain
transition probabilities

Qi(x, t, w) =

{
λ(x,t+w)
h(x,t+w)

i = k
hi(x,ci)
h(x,t+w)

i 6= k
(32)

with h(x, t) = λ(x, t) +
∑
l 6=k hl(x, cl) and the waiting-time density becomes

p(w | x, t) = h(x, t+ w)e−
∫w
0 h(x,t+T )dT . (33)

The exponential term e−
∫w
0 h(x,t+T )dT = 1− P (W < w | X(t) = x, t) := S(w | x, t) in (33) corresponds

to the probability that the system remains in state x until t+ w. Note that the transition probabilities
depend on t and w only through their sum such that Qi(x, t, w) = Qi(x, t+ w).

Now, as similarly described in [5] or [6], we can use the above definitions to formulate a generalization
of the Chapman-Kolmogorov equation for jump processes with non-exponential waiting-times. The
probability of finding the system in a particular state x at time t is determined by considering two cases.
If x 6= X(0) = x0, we know that we have reached x from another state x − νi via a reaction of type i.
The corresponding probability is obtained by summing over all possible reactions that may have moved
the system to a state x and all possible times at which the reaction may have fired. The latter will be
reflected by the aforementioned time-integral. A special case arises if x = x0, since we need an additional
term accounting for the case where X(t) has never changed from its initial condition. In summary, one
can show that the probability P (x, t) satisfies

P (x, t) = S(t | x, 0)1x0 (x)︸ ︷︷ ︸
No reaction until t.

+

N∑
i=1

∫ t

0

P (x− νi, t− w)Qi(x, t− w)h(x− νi, t− w)S(w | x, t− w)dw︸ ︷︷ ︸
Arrived in x through reaction i.

= S(t | x, 0)1x0 (x) +

N∑
i=1

∫ t

0

P (x− νi, t− w)hi(x− νi, t− w)S(w | x, t− w)dw.

(34)

Eq. (34) can be rewritten in differential form as

d

dt
P (x, t) =

N∑
i=1

∫ t

0

(
P (x− νi, t− w)Qi(x− νi, t− w)φ(w | x, t− w)

− P (x, t− w)Qi(x, t− w)φ(w | x, t− w)
)

dw,

(35)
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where the memory function φ(w | x, t) can in principle be derived from the waiting-time distribution
p(w | x, t). However, we are not aware of a fully general relation but if p(w | x, t) = p(w | x), i.e., it does
not explicitly depend on time, φ(w | x, t) is given by the Montroll-Weiss equation (ref. [27] in the main
text)

φ(u) =
up(u)

1− p(u)
, (36)

where φ(u) and p(u) denote the Laplace transforms of p(w | x) and φ(w | x), respectively. From
this relation, it is straight-forward to verify that the master equation becomes memory-less in case of
exponential waiting-time distributions (i.e., the memory function is given by a dirac-delta function)
[5, 6].

For the case considered here, we derive a master equation by direct differentiation of the Chapman-
Kolmogorov equation (i.e., similar to [7]). With the above definitions, (34) becomes

P (x, t) = e−
∫ t
0 h(x,T )dT

1x0 (x) +

N∑
i=1

∫ t

0

P (x− νi, t− w)hi(x− νi, t− w)e−
∫w
0 h(x,t−w+T )dTdw

= e−
∫ t
0 h(x,T )dT

1x0 (x) +

N∑
i=1

∫ t

0

P (x− νi, w)hi(x− νi, w)e−
∫ t−w
0 h(x,w+T )dTdw

= e−
∫ t
0 h(x,T )dT

[
1x0 (x) +

N∑
i=1

∫ t

0

P (x− νi, w)hi(x− νi, w)e
∫w
0 h(x,T )dTdw

] (37)

and taking the time-derivative further yields

d

dt
P (x, t) = e−

∫ t
0 h(x,T )dT

N∑
i=1

P (x− νi, t)hi(x− νi, t)e
∫ t
0 h(x,T )dT

− h(x, t) e−
∫ t
0 h(x,T )dT

[
1x0 (x) +

N∑
i=1

∫ t

0

P (x− νi, w)hi(x− νi, w)e
∫w
0 h(x,T )dTdw

]
︸ ︷︷ ︸

P (x,t)

.
(38)

With h(x, t) = λ(x, t) +
∑
l6=k hl(x, cl) we arrive at

d

dt
P (x, t) =

N∑
i 6=k

[
hi(x− νi, cl)P (x− νi, t)− hi(x, ci)P (x, t)

]
+ λ(x− νk, t)P (x− νk, t)− λ(x, t)P (x, t).

(39)

Eq.(39) illustrate that under the given assumptions, the uncoupled dynamics can be described by a
non-stationary and convolution-less master equation.

S.5.1 Derivation of the slow noise approximation

We apply the time-convolutionless master equation approach in order to approximate the transient
probability distribution of a birth-death process in a fluctuating environment, i.e.,

∅ Z(t)−−−→ X
cd−−−→ ∅,

where the environment Z enters the model through its birth-rate and cd is the rate constant of the
death-reaction. The birth-hazard of the uncoupled process X is then given by

λ(Xt) = E [Z(t) | Xt] . (40)

The slow noise approximation is based on two critical assumptions:
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1. The conditional process Z(t) | Xt can be well represented by a Gamma distribution with time-
varying parameters. We highlight that this assumption does not mean that the unconditional
process Z(t) needs to be approximately Gamma-distributed.

2. The impact of a fluctuating environment on a system can be well “mimicked” by a static environ-
ment Z̄ with a suitably chosen variance (e.g., the effective noise).

Under the Gamma-assumption, the conditional expectation from (40) is governed by the differential
equations

dM1 =
[
D1 − (M2 −M2

1 )
]

dt+
M2 −M2

1

M1
dRb

dM2 =

[
D2 − 2

M2

M1

(
M2 −M2

1

)]
dt+ 2

[
M2

2

M2
1

−M2

]
dRb.

(41)

Assuming a very slow environmental dynamics, we have that D1 and D1 become zero and hence,

dM1 = −(M2 −M2
1 )dt+

M2 −M2
1

M1
dRb

dM2 = −2
M2

M1

(
M2 −M2

1

)
dt+ 2

[
M2

2

M2
1

−M2

]
dRb.

(42)

The solution of (42) immediately before the next jump at time t is given by

M−1 (t) =
M2

1 (0)

M1(0) + (M2(0)−M2
1 (0)) t

M−2 (t) =
M2

1 (0)M2(0)

[M1(0) + (M2(0)−M2
1 (0)) t]2

.

(43)

Adding the the jump term
[
M2 −M2

1

]
/M1 to M−1 (t) further yields

M+
1 (t) =

M2
1 (0) +

(
M2(0)−M2

1 (0)
)

M1(0) + (M2(0)−M2
1 (0)) t

. (44)

Repeating the above procedure for the subsequent jumps, we obtain

M+
1 (t) =

M2
1 (0) +

(
M2(0)−M2

1 (0)
)
Rb(t)

M1(0) + (M2(0)−M2
1 (0)) t

=
µ2

µ+ σ2t
+

σ2

µ+ σ2t
Rb(t)

= λ(Rb(t), t),

(45)

with µ = E
[
Z̄
]

and σ2 = Var
[
Z̄
]

as mean and variance of the approximate environment Z̄. Importantly,
we find that the conditional mean – and therefore the hazard function only depends on the number of
birth reactions but not on when those reactions happened. The uncoupled dynamics can therefore be
described by eq. (39). Using the fact that X(t) = Rb(t) − Rd(t) for X(0) = 0, we obtain the time-
convolutionless master equation

d

dt
P (rb, rd, t) = λ(rb − 1, t)P (rb − 1, rd, t) + cd [rb − rd + 1]P (rb, rd − 1, t)

− λ(rb, t)P (rb, rd, t)− cd [rb − rd]P (rb, rd, t).
(46)

In the following, we derive a solution of this equation using the concept of generating functions [3]. In
particular, we employ certain properties of the probability generating function

γ(ηb, ηd, t) =

∞∑
rd=0

∞∑
rb=0

η
rb
b η

rd
d p(rb, rd, t), (47)
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which allow us to transform the difference-differential equation (46) into a PDE. It is straight-forward to
show that the discrete shifts in P (rb, rd, t) map to partial derivates of the probability generating function
yielding

∂

∂t
γ(ηb, ηd, t) =

µ2

µ+ σ2t
(ηb − 1) γ(ηb, ηd, t) + ηb

[ σ2

µ+ σ2t
(ηb − 1) + cd (1− ηd)

] ∂

∂ηb
γ(ηb, ηd, t)

+ cdηd (ηd − 1)
∂

∂ηd
γ(ηb, ηd, t).

(48)

We realize that the above equation is a linear PDE with time-varying coefficients, which we aim to solve
using the method of characteristics. This method is based on describing the PDE by means of so-called
characteristic curves that are given through a set of coupled ODEs – each of them corresponding to a
particular dimension of the PDE (i.e., ηb, ηd and γ). Considering a general linear first-order PDE with
three independent variables, i.e.,

∂

∂t
γ(ηb, ηd, t) = a(ηb, ηd, t, γ)

∂

∂ηb
γ(ηb, ηd, t) + b(ηb, ηd, t, γ)

∂

∂ηd
γ(ηb, ηd, t) + c(ηb, ηd, t, γ) (49)

the characteristic equations are given by

d

dt
ηb(t) = −a(ηb(t), ηd(t), t, γ(t)) (50)

d

dt
ηd(t) = −b(ηb(t), ηd(t), t, γ(t)) (51)

d

dt
γ(t) = c(ηb(t), ηd(t), t, γ(t)). (52)

In the special case of eq. (48), we have that

d

dt
ηb(t) = −ηb(t)

(
ηb(t)

σ2

µ+ σ2t
− cdηd(t)−

σ2

µ+ σ2t
+ cd

)
(53)

d

dt
ηd(t) = −cdηd(t)(ηd(t)− 1) (54)

d

dt
γ(t) =

µ2

µ+ σ2t
γ(t)(ηb(t)− 1), (55)

whose solution is given by

ηb(t) =
Acd

(
Becdt −B + 1

) (
µ+ σ2t

)
−ABσ2ecdt +ABcdσ2tecdt +ABσ2 +Aσ2ecdt −Aσ2 + cdµecdt

(56)

ηd(t) =
Becdt

Becdt −B + 1
(57)

γ(t) = e
− cdµ

2t

σ2

(
ecdt

(
cd
(
ABσ2t+ µ

)
−A(B − 1)σ2

)
+A(B − 1)σ2

cd (µ+ σ2t)

)µ2

σ2

, (58)

with ηb(0) = A, ηd(0) = B and γ(0) = 1. In order the obtain the general solution of γ, we need to
express the initial conditions A and B as functions of ηb and ηd using (56) and (57). The probability
generating function γ is finally given by

γ(ηb, ηd, t) =

(
cdµ

cd (µ+ σ2t(1− ηbηd)) + σ2ηb(ηd − 1) (ecdt − 1)

)µ2

σ2

. (59)

Back-transformation then yields the joint probability distribution over rb and rd, i.e.,

P (rb, rd, t) =
1

rb!rd!

∂rb+rd

∂η
rb
b ∂η

rd
d

γ(ηb, ηd, t)

∣∣∣∣∣
ηb=0,ηd=0

=

(
µ

µ+σ2t

)µ2
σ2 Γ

(
µ2

σ2 + rb
)

rd!(rb − rd)!Γ
(
µ2

σ2

) (
σ2
(
ecdt − 1

)
cd (µ+ σ2t)

)rb (
cdt− ecdt + 1

ecdt − 1

)rd
,

(60)

9



from which we compute the distribution in X as

P (x, t) =

∞∑
rb=x

P (rb, rb − x, t)

= NB
(
x;
µ2

σ2
,

cdµe
cdt

cdµecdt + (ecdt − 1)σ2

)
,

(61)

i.e., a negative binomial distribution. Furthermore, it is straight-forward to show that marginally, both
rb and rd have negative binomial distributions. We remark that the slow noise approximation is exact
in the case of infinitely slow as well as fast fluctuations.
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