Text S1-Analytical solutions

A general analytical solution for the problem of two competing sigma factor is not available, but different subsets of the parameters allow simplifications for which the model (as defined by Equations $4-8$ in Methods) can be solved analytically. In the main text, we often use $K_{E \sigma^{70}}=K_{E \sigma} A l t \equiv K_{E \sigma}$. In this case, the solution of the system for small core-sigma dissociation constants ($K_{E \sigma} \lesssim 10^{-6}$ M) is given by

$$
\begin{gathered}
{\left[E \sigma^{70}\right] \approx \begin{cases}{\left[\sigma^{70}\right]} & {\left[\sigma^{A l t}\right] \leq[E]-\left[\sigma^{70}\right]} \\
\frac{\left.[E] \sigma^{70}\right]}{\left[\sigma^{70}\right]+\left[\sigma^{A l t}\right]} & {\left[\sigma^{A l t}\right]>[E]-\left[\sigma^{70}\right]}\end{cases} } \\
{\left[E \sigma^{A l t}\right] \approx \begin{cases}{\left[\sigma^{A l t}\right]} & {\left[\sigma^{A l t}\right] \leq[E]-\left[\sigma^{70}\right]} \\
\frac{[E]\left[\sigma^{A l t}\right]}{\left[\sigma^{70}\right]+\left[\sigma^{A l t]}\right]} & {\left[\sigma^{A l t}\right]>[E]-\left[\sigma^{70}\right]}\end{cases} }
\end{gathered}
$$

According to Equation 9 in Methods there is sigma factor competition when

$$
\left[\sigma^{A l t}\right] \geq \begin{cases}{\left[\sigma^{70}\right] \frac{\rho}{1-\rho}} & {[E] \leq\left[\sigma^{70}\right]} \tag{S1}\\ \frac{[B]-(1-\rho)\left[\sigma^{70}\right]}{1-\rho} & {[E]>\left[\sigma^{70}\right]}\end{cases}
$$

where ρ is the percentage threshold that we set at 5%. This condition was used to plot the gray dashed lines representing the onset of the competition in all figures where $K_{E \sigma^{70}}=K_{E \sigma^{A l t}}$. At single particle threshold ($\rho \rightarrow 0$), Inequality S1 reduces to $\left[\sigma^{A l t}\right] \geq 0$ when $[E] \leq\left[\sigma^{70}\right]$ and to $\left[\sigma^{A l t}\right] \geq[E]-\left[\sigma^{70}\right]$ when $[E]>\left[\sigma^{70}\right]$.

A second case of interest is the one in Figure 6 where $K_{E \sigma^{70}} / K_{E \sigma^{A l t}} \equiv K<1$ and where both binding affinities are taken to be strong. Neglecting the pool of free holoenzymes in Equation 4 (see Methods), we obtain

$$
\begin{align*}
{\left[E \sigma^{70}\right] } & =\min \left([E],\left[\sigma^{70}\right], \frac{1}{2(K-1)}\left([E](K-1)-\left[\sigma^{70}\right]-K\left[\sigma^{A l t}\right]+\right.\right. \\
& \left.\left.+\sqrt{4[E](K-1)\left[\sigma^{70}\right]+\left([E](1-K)+\left[\sigma^{70}\right]+K\left[\sigma^{A l t}\right]\right)^{2}}\right)\right) \\
{\left[E \sigma^{A l t}\right] } & =\min \left([E],\left[\sigma^{A l t}\right], \frac{1}{2(K-1)}\left([E](K-1)+\left[\sigma^{70}\right]+K\left[\sigma^{A l t}\right]+\right.\right. \\
& \left.\left.-\sqrt{4[E](K-1)\left[\sigma^{70}\right]+\left([E](1-K)+\left[\sigma^{70}\right]+K\left[\sigma^{A l t}\right]\right)^{2}}\right)\right) \tag{S2}
\end{align*}
$$

According to Equation 9, sigma factor competition sets in when

$$
\begin{equation*}
\left[\sigma^{A l t}\right] \geq \frac{((1-\rho) m-[E])\left((1-K)(1-\rho) m-\left[\sigma^{70}\right]\right)}{K(1-\rho) m} \tag{S3}
\end{equation*}
$$

where $m=\min \left([E],\left[\sigma^{70}\right]\right)$. For $\rho=5 \%$ this expression agrees perfectly with the white dashed boundaries of Figures 6D and 6E. The curve has a minimum for $[E]=\left[\sigma^{70}\right]$. Solving Inequality

S3 with respect to $[E]$, we find that for $\left[\sigma^{A l t}\right] /\left[\sigma^{70}\right] \leq \rho(K(1-\rho)+\rho) /(K(1-\rho))$ there is no competition, for $\rho(K(1-\rho)+\rho) /(K(1-\rho))<\left[\sigma^{A l t}\right] /\left[\sigma^{70}\right] \leq \rho /(K(1-\rho))$ there is sigma factor competition if

$$
\begin{equation*}
\frac{\left[\sigma^{70}\right] \rho-K\left[\sigma^{A l t}\right](1-\rho)}{(1-K)(1-\rho) \rho} \leq[E] \leq \frac{(1-\rho)\left(K\left(\left[\sigma^{70}\right]+\left[\sigma^{A l t}\right]\right)-(K-1) \rho\left[\sigma^{70}\right]\right)}{K(1-\rho)+\rho} \tag{S4}
\end{equation*}
$$

and for $\left[\sigma^{A l t}\right] /\left[\sigma^{70}\right] \geq \rho /(K(1-\rho))$ if

$$
[E] \leq \frac{(1-\rho)\left(K\left(\left[\sigma^{70}\right]+\left[\sigma^{A l t}\right]\right)-(K-1) \rho\left[\sigma^{70}\right]\right)}{K(1-\rho)+\rho} .
$$

If $\rho \rightarrow 0$, the competition region reduces again to $\left[\sigma^{A l t}\right] \geq 0$ when $[E] \leq\left[\sigma^{70}\right]$ and to $\left[\sigma^{A l t}\right] \geq$ $[E]-\left[\sigma^{70}\right]$ when $[E]>\left[\sigma^{70}\right]$. For $K<1$, we know from the analysis of the response factor that R_{E} has a maximum at some value of $E>0$ (see Methods). In fact, if the binding affinity between the alternative sigma factor and the core is much weaker than the corresponding housekeeping one ($K \ll 1$), the solution given by Equation S 2 reduces to

$$
\begin{aligned}
{\left[E \sigma^{70}\right] } & \approx \begin{cases}{[E]} & {[E] \leq\left[\sigma^{70}\right]} \\
{\left[\sigma^{70}\right]} & {[E]>\left[\sigma^{70}\right]}\end{cases} \\
{\left[E \sigma^{A l t}\right] } & \approx \begin{cases}0 & {[E] \leq\left[\sigma^{70}\right]} \\
{[E]-\left[\sigma^{70}\right]} & {\left[\sigma^{70}\right]<[E] \leq\left[\sigma^{70}\right]+\left[\sigma^{A l t}\right]} \\
{\left[\sigma^{A l t}\right]} & {[E]>\left[\sigma^{70}\right]+\left[\sigma^{A l t}\right]}\end{cases}
\end{aligned}
$$

According to Equation 16, $[E]=\left[\sigma^{70}\right]$ yields the maximal response factor, as marked by the dashed blue line in Figure 6C.

