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Text S1: Characterization of the optimal solution with a two-dimensional
signal

In Figure S1-S5, we present a fuller characterization of the proposed model in a simplified setting, where
the original signal is drawn from a two-dimensional gaussian distribution. The goal is to intuitively but
fully characterize the base model (i.e., minimizing MSE subject to the individual power constraint without
additional resource constraint). There are five factors that determine the solution of this optimization
problem: (1) signal statistics (correlation), (2) blur, (3) sensory SNR, (4) neural SNR, and (5) neural
population size. We vary one of these at a time and examine the model’s behavior.

In these illustrations, an ellipse with principal axes depicts the iso-probability contour of a gaussian
probability density at 2σ. The associated dots indicate 100 samples drawn from the density. The color
scheme is the same as in the spectral analysis in Figure 6. Each column depicts the following. Original
& blurred signal: The densities of the original signal, p(s) (yellow) and the blurred signal, p(Hs) (blue),
respectively. The pairs of original and blurred samples are connected with lines for clarity. One randomly
chosen sample is highlighted with red, which can be traced in the following three plots. The number r2

indicates the correlation coefficient of the original signal. Observed signal & neural encoding: The blurred
signal, p(Hs) (blue; same as in the previous plot) and the sensory noise p(x|s = s∗) (red) where ∗ indicates
the highlighted sample. Recall the observed signal is x = Hs + ν. Also shown are the encoding filters,
W (black). The number indicates the sensory SNR. Neural representation: The encoded signal, p(Wx)
(blue), the neural noise, p(r|x = x∗) (red), and the total noise components in the neural representation,
p(r|s = s∗) (gray), caused by both sensory and neural noise, Wν + δ (because W is in general not
orthogonal, the optimal neural representation contains (anti-)correlated noise) [1]. The number indicates
the neural SNR. Decoding & reconstructed signal: The decoding, A (black), the reconstructed signal,
p(ŝ) (blue), the noise components (or variability) in the reconstructed signal, p(ŝ|s = s∗) (gray), and the
original signal, p(s) (yellow). The pairs of the reconstructed and the original samples were connected for
clarity. The number indicates the MSE of the reconstruction. It would be useful to recall how the signal
is reconstructed from the neural representation: ŝ = Ar =

∑M
j=1 rjaj where aj is the jth column of A,

and rj serves as the coefficient of the vector aj to generate ŝ.

Signal statistics

In Figure S1, the signal correlation is varied from r2 = 0.00 to 0.70 to 0.95, while all the other conditions
are fixed, i.e., the blur is modeled by attenuating the minor component by a constant fraction; sensory
and neural noises are added so that the SNRs are both 5 dB; and the number of neurons is two.

We can observe that the two encoding vectors (linear receptive fields) have a wide angle at low
correlation. This is partly because the proposed, optimal encoding tries to undo the blurring. The
angle gets narrower with higher signal correlation, and eventually, the two vectors collapse, yielding a
completely redundant, repetitive code. Note the MSEs get smaller with the more correlated signal. This
is because more information about the signal is available to counteract noise as the signal correlation (or
regularity) increases.

There are a couple of general points that we can observe from this example. First, it is clear that the
optimal encoding and decoding vectors are not similar, A 6∝WT , nor the same, A 6= WT (in contrast
to the assumption in the prior studies such as [2]). Second, in some cases, the optimal encoding vectors
lean towards the minor axis rather than the major axis (see also Figure S3–S4). This might appear odd
on first glance: it seems to make more sense if the encoding vectors were “tuned” to the dimension with
greater signal variance. The theoretical analysis clarifies two reasons for this trend. One is de-blurring
(i.e., undoing the attenuation along the minor axis). The other is the half-whitening from robust coding
(i.e., partially reducing redundancies in the signal). A more formal explanation can be found in [3].
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Blur

Figure S2 shows the optimal solution when there is no blur. These two examples are the same as the
first two examples of Figure S1 but no blur. The angle between two encoding vectors becomes smaller,
because there is no need to undo the blur. Note that the uncorrelated signal (r2 = 0.00) is a special
case in which the optimal encoding vectors are given by a pair of orthogonal vectors with an arbitrary
orientation (note the vector length needs to be optimized; see [4] for a related analysis).

Sensory SNR

In Figure S3, the sensory SNR is varied. Accordingly, the optimal encoding vectors change dramatically,
from strongly enhancing the minor axis (20 dB), to only encoding the major axis (−10 dB). Note that
these results correspond to the spectral analysis (Figure 6) and the retinal coding prediction (Figure 8).
Namely, encoding vectors at 20 dB lean towards the minor axis of the signal, which in the spectral analysis
corresponds to the larger gain in the higher frequencies (recall the signal variances are lower at the higher
frequencies, hence corresponding to the minor axis in the 2D example); the encoding vectors get to lean
toward the major axis as the signal SNR decreases, which corresponds to the larger gain in the lower
frequencies, which in the spatial domain corresponds to the pooling of multiple cone photoreceptors and
the highly overlapped receptive field organization.

Neural SNR

In Figure S4, the neural SNR is varied. As in case of varying the sensory SNR, the behavior of the
optimal solution changes dramatically with neural SNR, but in a different way. It is common, however,
that the two encoding vectors tend to reduce signal’s redundancy at the higher SNR, and that the two
vectors eventually collapse at the lower SNR.

Neural population size

In Figure S5, the neural population size is varied. If there is only one neuron in the population (row
1), the encoding vector always points to the direction of the major axis of the signal (and so does the
decoding vector). If there are three neurons (row 2 & 3), the constellation of encoding vectors becomes
irregular, but not completely. This is because Wopt is not fully constrained by the optimization problem:
there exist multiple P in eq. 7 that satisfy the individual power constraint (eq. 6), yielding multiple Wopt

(and Aopt). The solutions shown in Figure S5 row 2 & 3 are two such examples. Although they look
quite different, their encoding (and decoding) spectrum is unique. By imposing an additional constraint
such as spatial locality, P can be uniquely specified, leading to a unique solution of Wopt (and Aopt).
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