
Supplementary Text S1 

Modeling and implementation details 

In this section, we provide further details of the simulations described in Results. 

Learning speech 

For single word experiments, we normalized the duration of each cochleagram to 100 time 

units (~half a second) and we used eight neuronal populations at the second level to represent 

a word. Note that this normalization is not necessary at all for learning or recognition; rather 

we used it to meaningfully compare the recognition performances as described in the Word 

Recognition Task.  

For minimal assumptions about what values the kI  vectors should take, we use shrinkage 

(zero mean) priors for kI ’s and adapt them by learning using Dynamic Expectation 

Maximization described in the Model section. 

To learn these connections, we used a very high precision for the states at the second level 

(log-precisions of 16 and 24 for causal and hidden states, respectively), and used a relatively 

lower precision at the first level (log-precisions of 7 and 0 for causal (sensory) and hidden 

states, respectively). 

 

Word Recognition Task 

For recognition, we used high precisions for the hidden states (log-precisions of 12 and 20 for 

the first and second levels, respectively) and relatively low precisions for the causal states 

(log-precision of 3 for both the first and second levels) because modules have already learned 

the appropriate internal dynamics. We used the following process to make a decision about 

which word was presented: For a specific test sample, each of the ten modules which have 

each learned a specific digit from zero to nine produced prediction errors for hidden and 

causal states at the two levels when recognizing input. For each module, we accumulated the 

prediction error of the causal states over time obtaining a total prediction error. We excluded 

the prediction error from the hidden states because these were small (due to the high prior 

precisions), as compared to the causal states. We used a winner-take-all process where the 

winner was the module with the lowest prediction error, i.e. the module which can best 

explain the sensory input using its internal model. This process (accumulation and min-

operation) can be implemented by a higher level area and we call this structure which consists 



of several modules, the agent.  All reported error rates are the average rates obtained from a 5-

fold cross validation where we used different test sets each time for accurate word error rate 

(WER) results. 

After recognition of clean speech, we also tested the agent’s performance for noisy speech 

recognition. Following the learning procedure with clean speech samples, i.e. as measured 

under ideal recording conditions, we added white noise to each of the 500 sound wave 

samples to increase the difficulty of the recognition task. Even though white noise is 

stochastic and is added to each speech sample independently, an average pattern caused by 

white noise can be easily detected and learned from the resulting cochleagrams. We modeled 

this as a first feed forward step where a simple subtraction removes this average pattern of 

white noise before the preprocessed sensory input is passed forward to the recognition 

module. In particular, white noise added a constant to each frequency band with decreasing 

amplitude the higher the frequency band. Such noise reduction processes are also observed in 

humans through active cochlear mechanisms such as the electromechanical feedback of outer 

hair cells [1,2]. Without this preprocessing step, the WER for noisy stimuli are: 7.4% at 30 

dB, 26.8% at 20 dB, and 56% at 10dB which is comparable to [3]. 

 

Variations in speech rate 

We exposed the recognition model, which was trained on a normal length spoken digit (400 

ms), to a sample compressed by 25% (300 ms). We used relatively low precision for the states 

of the second level (log precisions of 5 and 0 for the causal and hidden states, respectively) 

since the module must be able to follow the unexpected fast stimulus. 

 

Recognition in a Noisy Environment 

Since ‘Cocktail Party’ stimuli are longer than the single words used above, we used 25 

neuronal ensembles at the second level. Moreover, we used slightly higher precisions for the 

causal states during the recognition of the clear sentence and decreased this precision 

progressively for noisier stimuli as the stimulus becomes less reliable. 

 

 

Second language learning 

In the experiment, the recognition accuracy was computed as the percentage of correctly 

repeated words. We used the digit samples of the Word Recognition Task as stimuli. 

Similarly, ten modules, one for each digit, were trained on clear speech samples. The test 



stimuli were noise-masked versions of the clear stimuli (pink noise as used in the experiment) 

at signal-to-noise ratios: -15, 0 15 and 30 dB. We picked these ratios since best recognition 

results with our model were obtained at 30 dB which corresponds to almost ideal recognition 

results in humans around 12 dB and we scaled the remaining ratios accordingly. To test the 

hypothesis that the internal precisions of a module explain how well a second language is 

learned, we modeled the different AOA groups by learning with different precision settings 

for the sensory states (C1) and hidden states (H1) at the first level.  To model the effect of 

increasing AOA we used a decreasing C1/H1 ratio which should result in less efficient 

learning according to the results in the Accent Adaptation simulation. Specifically, we used, 

the following log-precisions: Native speakers (C1 = 6.75, H1 = 0.25), Early group (C1 = 4.75, 

H1 = 2.25), Mid group (C1 = 4.5, H1 = 2.5) and Late group (C1 = 4.25, H1 = 2.75). After 

learning, we exposed each module to its corresponding digit stimulus at different signal-to-

noise ratios and computed the accumulated causal prediction errors. To model behavioral 

measurements, we used the normalized 1 – prediction error, i.e. 100*[(baseline-prediction 

error)/baseline], where baseline stands for the baseline prediction error which is obtained from 

the recognition of stimuli with high noise, i.e. -30dB. 
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