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with little substrate: Supporting Information  
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1. Derivation of the equations associated with the main model 

 
From the differential equations that describe the dynamics of the system (Eqs. (1–4) 

in the main text), the concentrations of the chemical species at steady state are 

straightforward to obtain: the left hand side of of Eqs. (1–4) becomes zero and we get 

Eqs. (7–10), reproduced below. 

 

P. Sj⎡⎣ ⎤⎦ =
1

bP + j kP + k 'P( ) fP P[ ] Sj⎡⎣ ⎤⎦ + j +1( )k 'P P. Sj+1⎡⎣ ⎤⎦( ) ,                                   (S1) 

K . Sj
*⎡⎣ ⎤⎦ =

1
bK + n − j( ) kK + k 'K( ) fK K[ ] Sj*⎡⎣ ⎤⎦ + n − j +1( )k 'K K . Sj−1

*⎡⎣ ⎤⎦( ) ,                  (S2) 

Sj⎡⎣ ⎤⎦ =
1

bL , j + fP P[ ] fL , j S j
*⎡⎣ ⎤⎦ + bP P. Sj⎡⎣ ⎤⎦ + j +1( )kP P. Sj+1⎡⎣ ⎤⎦( ) ,                                (S3) 

Sj
*⎡⎣ ⎤⎦ =

1
fL , j + fK K[ ] bL , j S j

⎡⎣ ⎤⎦ + bK K . Sj
*⎡⎣ ⎤⎦ + n − j +1( )kK K . Sj−1

*⎡⎣ ⎤⎦( ) .                        (S4) 

 

where the rates are as described in the main text. We wish to compute the Hill number 

of the dose-response curve, which can be defined as proportional to the local 

sensitivity at the level of input that generates a half response [1] (Eq. (12)): 

 

hn = −2 d loggn
d log P[ ]

⎛
⎝⎜

⎞
⎠⎟ P[ ]= P[ ]h

 .                                                                                         (S5) 

 

This is the mathematical definition of the Hill number and can be obtained from a Hill 

equation. Provided that the type of curve we are analysing is of a similar shape to a 

sigmoidal Hill curve or a hyperbolic Michaelis-Menten curve, it is similar to other 
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proxy measures used to estimate ultrasensitivity [2], and it is particularly useful for its 

analytical tractability. 

 

We keep the kinase levels fixed and vary the phosphatase levels, hence the 

concentration of the phosphatase normalised to the constant levels of the kinase is the 

input, and Eq. (S5) is evaluated at the level P[ ]h  that generates a half maximal 

response. The response is given by the fraction of active states of the substrate 

 

gn =
Sj
*⎡⎣ ⎤⎦ +j=0

n∑ K . Sj
*⎡⎣ ⎤⎦

Sj⎡⎣ ⎤⎦ + Sj
*⎡⎣ ⎤⎦ +j=0

n∑ P. Sj⎡⎣ ⎤⎦ + K . Sj
*⎡⎣ ⎤⎦

 ,                                                               (S6) 

 

hence we must solve the system of equations S1–S4. We solve the system in an 

algebra package, such as Mathematica (Wolfram Research, Illinois), constrained to 

K . S−1
*⎡⎣ ⎤⎦ = 0  in Eqs. (S1, S3) and P. Sn+1[ ] = 0  in Eqs. (S2, S4) (because both K . S−1

*  

and P. Sn+1  do not correspond to any real states). One can, for example, use Eqs. (S1–

S4) to first determine K . S0
*⎡⎣ ⎤⎦ , P. S0[ ] , P. S1[ ]  and S0[ ]  as a function of S0

*⎡⎣ ⎤⎦ ; then 

to use these to determine K . S1
*⎡⎣ ⎤⎦ , P. S1[ ] , P. S2[ ]  and S1[ ]  as a function of S0

*⎡⎣ ⎤⎦ ; 

and continue until the 𝑛-th terms.   

  

If one does the above calculations for n = 1 , n = 2 , n = 3 , etc., and considers an 

idealised symmetric system when the parameters that govern the activity of the kinase 

are identical to the equivalent parameters for the phosphatase ( fK = fP = f , 

bK = bP = b , kK = kP = kcat , k 'K = k 'P = k 'cat ; and so P[ ]h = K ≈ KT ), as well as 

identical forward and backward allosteric rates (bL , j = fL , j = bL ), one obtains: 

 

hn=1 =
2bL kcat λ f + A
2bkcat bL + B

,                                                                                               (S7) 

hn=2 =
3bL kcat λ f + A
3bkcat bL + B

,                                                                                               (S8) 

hn=3 =
4bL kcat λ f + A
4bkcat bL + B

,                                                                                               (S9) 
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… 

  

from whence we conclude: 

 

hn =
n +1( )bL kcat λ f + A
n +1( )bkcat bL + B

,                                                                                       (S10) 

 

where 

A = λ f 2bL k 'cat+ b( ) + λ f kcat + k 'cat( )( ) , 

B = 2bLb
2 + λ f kcat + k 'cat( ) bL + λ f( ) + bLk 'cat( ) + b λ f 2bL + kcat + k 'cat( ) + 2bLk 'cat( ) . 

Rearranging Eq. (S10), one obtains Eq. (15) in the main text. Eq. (S10) has an upper 

bound of n +1  because, under the conditions described in the main text, the first term 

in the denominator vanishes when b  is small. 

 

Eq. (17) in the main text is derived as above for n = 1 , but with nonidentical allosteric 

rates and disregarding the processive catalytic rates ( k 'k = k 'P = 0 ). 

 

2. The general case when k 'k = k 'P = 0  

 
If we are simply interested in the case where only distributive reactions occur 

(diagonal arrows in Fig. 2), then the analytical calculations are more amenable and we 

can write more elegant solutions for the steady state levels of the states of the system. 

From Eqs. (1–4) in the main text, we obtain: 

 

P. Sj⎡⎣ ⎤⎦ =
1

KM , j
P P[ ] Sj⎡⎣ ⎤⎦ ,                                                                                          (S11) 

K . Sj
*⎡⎣ ⎤⎦ =

1
KM , j

K K[ ] Sj*⎡⎣ ⎤⎦ ,                                                                                         (S12) 

Sj
*⎡⎣ ⎤⎦ = S0

*⎡⎣ ⎤⎦
K[ ]
P[ ]

⎛
⎝⎜

⎞
⎠⎟

j KM ,x
P n − j + x( )kK
KM ,x−1

K x.kP

bL ,x +
x.kP
KM ,x

P P[ ]

fL ,x +
n − x( )kK
KM ,x

K K[ ]

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

x=1

j

∏ ,                        (S13) 
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Sj⎡⎣ ⎤⎦ = Sj
*⎡⎣ ⎤⎦

fL , j +
n − j( )kK
KM , j

K K[ ]

bL , j +
j.kP
KM , j

P P[ ]
,                                                                             (S14) 

 

which have been rewritten as a function of the classical Michaelis-Menten constants

KM , j
P = bP + j.kP

fP
 and KM , j

K =
bK + n − j( )kK

fK
. 

 

Eqs. (S11) and (S12) are obtained from Eqs. (1) and (2). The general expressions for 

the concentrations of the substrate states Sj
*  and Sj  are obtained from the respective 

ordinary differential equations at steady state: 

 

d
dt

Sj⎡⎣ ⎤⎦ = 0 = fL , j S j
*⎡⎣ ⎤⎦ + bP P. Sj⎡⎣ ⎤⎦ + j +1( )kP P. Sj+1⎡⎣ ⎤⎦ − bL , j + fP P[ ]( ) Sj⎡⎣ ⎤⎦ ,         (S15) 

d
dt

Sj
*⎡⎣ ⎤⎦ = 0 = bL , j S j⎡⎣ ⎤⎦ + bK K . Sj

*⎡⎣ ⎤⎦ + n − j +1( )kK K . Sj−1
*⎡⎣ ⎤⎦ − fL , j + fK K[ ]( ) Sj*⎡⎣ ⎤⎦ . (S16) 

 

Starting with j = 0  (denoting unphosphorylated substrate), we use Eqs. (S16) and 

(S2) to find S0[ ]  as a function of S0
*⎡⎣ ⎤⎦ : 

 

S0[ ] = 1
bL ,0

fL ,0 +
nkK
KM ,0

K K[ ]
⎛

⎝
⎜

⎞

⎠
⎟ S0

*⎡⎣ ⎤⎦ ,                                                                          (S17) 

 

and then replace Eqs. (S1) and (S17) into Eq. (S15) obtain S1[ ]  as a function of S0
*⎡⎣ ⎤⎦ : 

 

S1
*⎡⎣ ⎤⎦ =

KM ,1
P n kK
KM ,0

K kP

bL ,1 +
kP
KM ,1

P P[ ]

fL ,1 +
n −1( )kK
KM ,1

K K[ ]
K[ ]
P[ ] S0

*⎡⎣ ⎤⎦ .                                                        (S18) 

  

Repeating the steps above for j = 1 , we obtain: 
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S1[ ] = KM ,1
P n kK
KM ,0

K kP

K[ ]
P[ ] S0

*⎡⎣ ⎤⎦ ,                                                                                        (S19) 

S2
*⎡⎣ ⎤⎦ =

KM ,1
P KM ,2

P n n −1( )kK 2
KM ,0

K KM ,1
K 2 kP

2

bL ,1 +
kP
KM ,1

P P[ ]

fL ,1 +
n −1( )kK
KM ,1

K K[ ]

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

bL ,2 +
2 kP
KM ,2

P P[ ]

fL ,2 +
n − 2( )kK
KM ,2

K K[ ]

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

K[ ]
P[ ]

⎛
⎝⎜

⎞
⎠⎟

2

S0
*⎡⎣ ⎤⎦

.                      (S20) 

 

By repeating this until we reach the n -th terms, Eqs. (S13) and (S14) can be obtained 

recursively, and used directly to calculate the Hill numbers for purely distributive 

systems.  

 

For the alternative model of Fig. 5A, Eq. (20) in the main text is obtained recursively 

from the ordinary differential equation for Sj⎡⎣ ⎤⎦  at steady state in the same manner as 

described above. 

 

3. Comparison to a Monod-Wyman-Changeux model  

 
The Monod-Wyman-Changeux (MWC) model of allostery [3] is a well known 

mechanism that can generate ultrasensitivity in response to an input. Allosteric 

proteins are assumed to transition between two conformational states, active (typically 

called the R , or relaxed, state) and inactive (typically called the T , or tense, state). 

The transitions are concerted, i.e., if the protein is multimeric, all of its subunits 

change their conformation simultaneously. In the absence of any input there is an 

equilibrium bias that favours one of the conformations, e.g., the inactive. Addition of 

the input reveals a counterbalancing bias: the molecules of input have greater affinity 

for the active form. Consequently, the presence of input stabilises the active 

conformation and switches the system on. The dose-response curve of the MWC 

system can be sigmoidal with the upper bounds of the Hill number being equal to the 

number of subunits (or the number of binding sites for the input molecules). 
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One important difference between the MWC system and phosphorylation cycles is 

that the former does not need to spend energy – all reactions occur in closed 

thermodynamic cycles and reach chemical equilibrium. We therefore asked what are 

the consequences of that observation for the dose-response of an MWC system whose 

allosteric interactions with the molecules of input are governed by enzymes. 

 

Let us consider the following modification of the original MWC model: an enzyme E  

binds to the substrate in the R  state, forming the complexes E. Rj . Molecules of 

input S  are then free to bind the substrate, forming the complexes E. Rj+1  and, if the 

enzyme unbinds, Rj+1 . There is an enzyme F , which performs an analogous activity 

when the substrate is in the T  state. When the system is at chemical equilibrium, 

calculating the levels of the states of the system is straightforward: 

 

Rj⎡⎣ ⎤⎦ =
S[ ] j
KR

j R0[ ] ,                                                                                                     (S21) 

E. Rj⎡⎣ ⎤⎦ =
E[ ]
KE

S[ ] j
KR

j R0[ ] ,                                                                                          (S22) 

Tj⎡⎣ ⎤⎦ = L
S[ ] j
KT

j R0[ ] ,                                                                                                   (S23) 

F.Tj⎡⎣ ⎤⎦ = L
F[ ]
KF

S[ ] j
KR

j R0[ ] ,                                                                                        (S24) 

 

where KR  is the dissociation constant of the molecules of input in the R  state, KT  is 

the dissociation constant of the molecules of input in the T  state, KE  is the 

dissociation constant of the enzyme E , KF  is the dissociation constant of the enzyme

F , and L  is the allosteric equilibrium constant between the R  and T  states. The 

dose-response function is given by the proportion of active states 

 

f =
Rj⎡⎣ ⎤⎦ + E. Rj⎡⎣ ⎤⎦j=1

n∑
Rj⎡⎣ ⎤⎦ + E. Rj⎡⎣ ⎤⎦ + Tj⎡⎣ ⎤⎦ + F.Tj⎡⎣ ⎤⎦j=1

n∑
 .                                                             (S25) 
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Assuming the concentrations of enzymes and input are much greater than the 

concentration of substrate and taking KE = KF = K , we replace Eqs. (S21–S24) into 

Eq. (S25) to obtain: 

 

f =
1+ S[ ]

KR

⎛
⎝⎜

⎞
⎠⎟

n

1+ S[ ]
KR

⎛
⎝⎜

⎞
⎠⎟

n

+ L 1+ c S[ ]
KR

⎛
⎝⎜

⎞
⎠⎟

n
K + F[ ]
K + E[ ]

⎛
⎝⎜

⎞
⎠⎟

 ,                                                           (S26) 

 

where c = KR KF . Eq. (S26) is ultrasensitive for signals that affect the ligand S  (with 

Hill numbers of up to n ), but not for changes in the enzyme concentrations (if S  is 

fixed), presumably because the action of the enzymes can be easily reverted in 

energy-free thermodynamic cycles. A phosphorylation-dephosphorylation cycle, as 

we have studied in the main text, is not so constrained and can generate ultrasensitive 

behaviour as the ratio of enzyme concentration changes. 
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