Table S3. Model reactions with complex rate expressions. Reactions are listed with their associated rate expression and rate constants. Reaction
numbering is continued from Table S2. Asterisks (*) denote uncertain parameter values that were varied during parametric analysis and optimization.

# | Reaction and Kinetic expression Parameters References
— -1 a
1511 150U + 2 Cys — 55, IscU(2S)* + 2 Ala + 2 H' keat =0.075 " [1]
Keys = 2.7x10 ° M * [1]
Kisu = 2.6x10°° M * [1,2]
o K [1SCS][IscU][Cys]
[ISCU][Cyg + KCys[ISCU]+ KIch [CyS]
1521 scU([2Fe-2S])* + 2 Cys — 5 |scU([2Fe-25]-25)" + Ala + 2 H* ke = 0.075° [1]°
Keys = 2.7x10°° M * [1]
Kisu = 2.6x10°° M * [1,2]
. K. [1scS][IscU(2Fe2S)][Cys]
[1scU(2Fe29)][Cys]+ K [I1SCU(2Fe29)] + K e [CYS]
153/p IscU([2Fe-2S])> + ATP + H,0 —%8 5 5cU + Pyegos(holo) + ADP + P, + H* kot =35x10 s * [31
2re25(8p0) + IsCU([2Fe-2S])™ + + H,0 ———> IscU + Pareps(holo) + tRit KPtZFeZS(apO) =27x10°M*|[3]
- Ko [1SCU(2FE29)][P,p5(aP0)]
K Py rers(apo) + [PZFeZS(apO)]
1541 p,.»s(apo) + IscU([2Fe-2S],)" + ATP + H,0 — 28 |scU([2Fe-2S]) + Pyreas(holo) + ADP + P, + H' ke =35x10°s° > |[3]
Kpareasapo) = 2.7%10° M * | [3]
— kcat [ISCU(ZFEZS)Z][PZFeZS(apO)]
Kepapo) T [Poreas(@PO)]
155/ pNA(dX) + H,0 —2 5 DNA(APG) + X ko =4.0x10 s~ [4]°
KDNA(dX) =53x10°" M * [4]
ke [AIKA][DNA(dX)]
Konagx) + [DNA(dX)]
156 | DNA(dI) + H,0 — 5 DNA(AP,) + hX kou = 1.3x10°°5 [51
KDNA(dI) =4.2x10° M * [5]

_ ke [AIKA][DNA(dI)]
 Konagy +[DNA@IY]




157/ DNA(dU) + H,0 —2% 5 DNA(AP) + U K =055 [6]
KDNA @u) = =2. 78x10 M * [6,7]
_ ke [Ung][DNA(dU)]
KDNA(dU) +[DNA(dU)]
158 DNA(APG) + 2 H,0 —"5 DNA(dG)gp + 2 H' + dR5P ke =0.235 [8]'
Konacare) = 1. 6x10° M (8]
_ ke [Xth][DNA(AR)]
KDNA(APG) +[DNA(AR; )]
159 | DNA(APA) + 2 H,0 —X 5 DNA(dA)gy+ 2 H' + RSP ke =023s" [8]'
Konaara) = 1.6x10° M [8]
_ ke [Xth][DNA(AF,)]
KDNA(APA) +[DNA(AR, )]
— —1 T
160 | DNA(APL) + 2 H,0 — 5 DNA(AC)qgep + 2 H' + dRSP Kea = 0.23 5 » [8]
Kbnaarcy = 1.6x10° M [8]
_ ke [Xth][DNA(AR,)]
KDNA(APC) +[DNA(AR)]
161| DNA(UG)gep + AGTP — 5> DNA(AG)yi. + PP; keat = 14 [9]°
Kona@e)gap = 5:4%107° M [9]
KI ,DNA(dG)gap — =8. 1X10 M [9]
o [PoII][dGTP][DNPf\(dG)gap] . Ki onaoick = leo M (o]
: Kgerp = 1.3x10° M [10]
i, DNA(G)qq DNA@G)gqp dGTP
Ki,DNA(dG)gap Kier + KDNA(de)gap [dGTP]+ K g [DNA(dG)gap ]{14‘ J + [DNA(dG)gap ][dGTP](1+ J
i,DNA(AG) i 1,DNA®AG) ek
162 | DNA(dA)gep + dATP —P 5 DNA(dA) ek + PP, Kt =145 [9]°
KDNA (dA)gap — =5. 4)(]_0 M [9]
K; DNA(dA)gap = =8. 1X10 M [9]
. ko [POI][dATPI[DNA(A),,, ] K. onmgams = 2. me M (1]
Ki,DNA(dA)gap KDNA(dA)gap Kgare = 3. 7x10° M [10]

K i, DNA(AA) 4, KdATP +K DNA@AA) g [dAT P] +K dATP [D NA(dA)gap ][]—"‘

i,DNAAA) ik

J +[DNA(dA),,, IdAT P]{l+

i DNAA) i

|




163 | DNA(AC)gep + ACTP —2 5 DNA(AC)yisk + PP; Kt =145 I
KDNA(dC)gap =5.4x10 79M [9]
Ki.ona@c)gep = 8.1x10° M | [9]
Ko [PON][ACTPI[DNA(AC),,, ] Ki,onagopick = 2.2x10° M [[9]
r= Kaerp = 2.1x10° M [10]"
K i,DNA(dC)gap K DNA(dC)gap
Ki onae),, Kaete T Konagey,, [dCTP]+ Kycrp [DNA(C),,, ] 1+———— |+[DNA(C),, IdCTP] 1+ ————
i, DNA(AC)p e i, DNA(AC) i
1641 DNA(AG)yi + NAD* —H 5 DNA(G) + AMP + NMN + H* ke =0.0235° [11]
Kyaps =7.0x10°M |[11]
. . K viok = 5.0x10° M [[11]
‘e ke [LIGAJ[DNA(AG), 4 JINAD'] oA
[DNA(dG),« JINAD" [+ K 0. [DNA(AG), i ] + Kpnagoy,, [NAD']
165| DNA(dA) ek + NAD* —H 5 DNA(A) + AMP + NMN + H kae =0.0235 . [11]°
KNAD+ =7.0x10"° M 6 [11]
. N K vk =5.0x10° M [[11]
. ke [LIGAJ[DNA(dA), 4 JINAD'] oA
[DNA(dA), i JINAD ] + K yaot [DNA(dA), o]+ K onada), 4 [NAD"]
166 | DNA(AC)nc + NAD* —H94 5 DNA(AC) + AMP + NMN + H* ket = 0.0235 » [11]'
Kyap: =7.0x10°M | [11]
. . Konagopick = 5.0x10° M | [11]
e ke [LIGAJIDNA(C),, JINAD'] o
[DNA(dC), JINAD ]+ K| . [DNA(C), ] + K ona@C), [NAD]
167 GSNO + 2 NADH + 2 H* + GSH —%P"; GSSG + NH; + H,0 + 2 NAD' ke =3157 [12]
KGSNO =7.4x10" M [12]
k., [GSFDH][GSNO]
Kesno T [GSNO]
168 | GssG + H* + NADPH —*2» 2 GSH + NADP* k=267s" (131
k, = 6.55x10° M s [14]
) Knaoph = 2.2x107° M [13]
_ kl[GOF][GSSG ][NADPH]+ kz[GOI’][GSSG] [NADPH] Kassg = 9.7x10° M [13]
K yaopr [GSSG] + K oses [INADPH]+ [GSSG][NADPH] + K,[GSSG]? + K,[GSSG]*[NADPH] Ky =0.022 [14]

K,=3.9x10° M

[14]




169 Trx, + NADPH + H* —™ 5 Trx.q + NADP* ko =41.255° [15]
Knapph = 4.6x10° M [15]
Krnox = 1.7x10° M [15]
‘ Kea [TPRI[T 1, JINADPH] i
[TrXo JINADPH] + Kyapp [ TrX o ] + KTerX[NADPH]
170 | TrXeq + GSNO — TrXo, + HNO + GSH ket = 0.025 [16]
Kgsno = 1.0x10° M [16]
r= kcat [TrXred ] [GSN O]
Kesno +[GSNO]
171 Cyo + NO- = Cyo(NO) Konno- = 6.8x10° M's™  [[17]™
Kotixor = 0.03 5 [17]
K NO"1ICVG K.=6.05x10° M [17]
_ Konnee 5 I[Cy ]_koff,NO-[Cyo(No)] Kano. = 4.4x10°° M [17]
1+[ 2]
0,
172 | Cyd + NO- = Cyd(NO) Konno- = 3.8x10°M's * [[17]™
koff’NO. = 0.16?7571 [17]
Konnios[NO"1[Cy ] oz =2.7x10 I L17]
_ lon) 0 _ koff,NOo[Cyd(No)] Kino. =5.5x10 " M [17]
1+=22
Koz
173 |NorV,y + NADH — NorV,e + NAD" + H* Keat = 5.5x10° M 's? [18]"
Kino- = 1.35x10° M [19]°
_ ke [NorV,, JINADH]
1+ M
Ki,NO-
174 N0V eq + 2 NO* + 2 H" — NorVe, + N,O + H,0 Keat = 7455 © [20]°
Kno. = 1.2x10° M [21]

_ k[NorV, JINO']
Kyo. +INO’]




175 |[NO++ 6 H" + 2.5 NADH — NH;" + H,0 + 25 NAD" + 25 H' Keat = 390 5 [22]¢

Kyo. = 3.0x10* M [23]"
_ ka[NITAJINO']
Kyo. +[NO]
176 kiao, = 1.36x10%s ' s
O2.ir = Oz culture L302
r= kl_ao2 ([Oz]sat _[02])
177 | — HMPeapfes Kiimp-exp,max t

=193x108M-st*

KHmp-exp,NO-

r kap-exp,max [NO] =3.38x10'M*
[NO.] + KHmp—exp,NOo
178 | — NOfVox I(NorV-exp,max t
=6.81x10°M-st*
. KNorV-exp,NO'
Knorv-expmax [NO"] =941 x10°M*

r =
[NO.] + KNorV—exp,NOo

179 | — NrfA kNr‘fA—exp,max t
=7.72x10°Mst*

KNr‘fA-exp, NO2-

kNrfA—exp,max [NOE] =9.32x10*M*
r= [O ] KNr'fA-exp,OZ 1
_ 2 =345x10"M*
[N02]+ KNrfA-exp,NOg 1+ KNrfA expO
- ~2

a. Literature ke is per mol cysteine; value shown has been halved according to the stoichiometry used.

b. Rate constants shown are for the reaction in the absence of the HscAB chaperone system. When present, the chaperone system has been shown to increase the [Fe-S] cluster
transfer rate by approximately 10-fold [24].

c. [2Fe-2S] cluster transfer to an apoprotein was assumed to occur with both [2Fe-2S] and 2x[2Fe-2S]-loaded forms of IscU, and at similar rates.

d. The ke, was calculated from the reported V.« by dividing by the concentration of AIKA enzyme used in the assay (300 fmol per 10 pl, or 30 nM).

e. The Michaelis constant for the deaminated base (Kpnagu)) Was calculated from the constants associated with binding and unbinding (k; and k-4, respectively) of the enzyme to
the DNA strand [7], and the reported ke value [6], assuming intermediate enzyme complexes are in rapid equilibrium: Kpnaguy = (Keat + K-1)/K1.

f. Kinetics constants are for the rate of excision of deoxyribose (regular AP site) in oligonucleotides by Xth. For the reaction, we assumed the AP site and adjacent phosphate were
removed in a single step to release 5dRP. The rate was also assumed to be independent of the base removed to form the AP site.




g. The rate expression was obtained from [9]. Kpnanygap 1S the constant associated with the damaged DNA binding as a substrate, K; pnagnygap 1S the substrate inhibition constant
for the damaged DNA, and K; pnacnynick iS the constant describing product inhibition by the repaired DNA (where N = A, C, or G).

h. Kgnte is the average of the two values reported for base re-insertion into two different types of template DNA strands.

i. Based on the reported reaction mechanism [11], we assumed ping-pong kinetics, and therefore used the corresponding form of the rate equation. The rate constants were also
assumed to be independent of the nucleotides adjacent to the backbone nick. A proton (H™) was added to the products of the reported reaction to balance stoichiometry.

j- The rate constants were approximated from Figure 1b in [12].

k. The rate expression was obtained from literature [14]. Values for rate constants k,, Ky, and K, are for glutathione reductase in rat liver [14], while k;, Knapph, and Kgssg Were
measured for the E. coli enzyme [13].

I. Ping-pong kinetics were assumed based on the report of ping-pong behavior for human placenta thioredoxin reductase [25].

m. Reversible binding of NO« to Cyo and Cyd was modeled as following Michaelis-Menten behavior. Due to normal respiration activity (consumption of O,), the effective enzyme
concentration will be reduced. This was taken into account by adding a competitive inhibition term to the denominator, as O, and NO¢ are competing for the same active site.

n. Reported rate constant was measured at 5°C.

0. NorV is inhibited upon binding of NO« to its oxidized form. The inhibition rate constant shown is for the NO- reductase of Paracoccus denitrificans.

p. Literature ke is per mol NO«; value shown has been halved according to the stoichiometry used.

q. keat is reported to range from 30 to 1000 s * [22].

r. Kno. value was measured at 4°C.

s. The oxygen mass transfer coefficient (k ao,) was measured in our experimental system (see Figure S12 and Text S1).

t. Parameters governing enzyme expression were determined via parameter optimization with experimentally measured [NO-] curves for aerobic, wild-type E. coli cultures dosed
with 0.5 mM DPTA (see Table S4 and Text S1).
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