
Matlab functions for: 
1. Simulating the size of observed transmission chains when the offspring distribution is a negative 

binomial and observation of cases occurs with either an independent or chain-size dependent 
probability. 

2. Calculating the probability density function for the observed size of simulated chains. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function chain_dist = chain_distribution(r0,k,pobs,max_outbreak_size,num_sim) 
    % Generates disease outbreak data (i.e. the distribution for the observed 
    % size of transmission chains) 
    % 
    % r0 = mean secondary infections per infected individual 
    % k = dispersion parameter of offspring distribution 
    % pobs = Observiaton bias 
    %   pobs(1) = mode of bias [0 perfect surveillance, 1 i.i.d. bias 
    %                                 2 weighted cluster bias] 
    %   pobs(2) = individual level probability of observation 
    % num_sim = number of chains simulated 
    % 
    % chain_dist(i,1) = number of chains of size i 
    % chain_dist(i,2) = number of chains of size i that did not go extinct 
    %   before simulation ended 

  
    chain_dist=zeros(1,2); 

  
    n = 0; % Counts how many 
    while (n < num_sim) 
        popsize = 1; % Number of cases that can still transmit 
        outbreak_size = popsize; % Running count of case in a chain 
        while (popsize > 0 && outbreak_size < max_outbreak_size) 
            nb_dist = gen_nb_dist(r0,k,popsize,1); 
            popsize = sum(nb_dist); 
            outbreak_size = outbreak_size + popsize; 
        end 
        if pobs(1) == 1 % i.i.d case 
            outbreak_size = binornd(outbreak_size,pobs(2)); 
        elseif pobs(1) == 2 % weighted cluster case 
            if(rand() < (1-pobs(2))^outbreak_size) 
                outbreak_size = 0; 
            end 
        end 

  
        % Record outbreak_size 
        if (outbreak_size > 0) 
            if (outbreak_size > size(chain_dist,1)); 
                chain_dist(outbreak_size,1) = 0; 
            end 
            chain_dist(outbreak_size,1) = chain_dist(outbreak_size,1)+ 1; 
            if (popsize> 0) 
                chain_dist(outbreak_size,2) = chain_dist(outbreak_size,2)+ 1; 
            end 
            n = n+1; 
        end 
    end 



end 

  
function nb_dist =gen_nb_dist(r0,k,m,n) 
    % Chooses an m by n array of integers according to a negative binomial 
    % distribution 
    % 
    % r0 = mean 
    % k = dispersion parameter as defined in Jamie's '05 paper 
    %   k =1 --> geometric dist w/ Var = ro(r0 +1) 
    %   k = Inf --> Poisson dist w/ Var = r0 
    % 
    % nb_dist = output  

  
    nb_dist = poissrnd(gamrnd(k,r0/k,m,n)); 

  
    % Note that matlab uses r,p for the negative binomial parameters where r 

    % is 'k' and p is 'k/(r0+k)' 
end 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function chain_pdf = calc_chain_pdf_forSup(r0,k,pobs_arr,outbreak_size_limit) 
    % Calculates the expected pdf for the distribution of outbreak sizes. 
    %   pobs_arr(1) = mode of bias [0 perfect surveillance, 1 i.i.d. bias 
    %                                 2 weighted cluster bias] 
    %   pobs_arr(2) = individual level probability of observation 

  
    pobs_mode = pobs_arr(1); 
    pobs = pobs_arr(2); 

  
    if(pobs_mode == 1 && pobs < 1) 
        % Large chains can be as observed chains and so we'll have to compute 
        % the 'true' pdf for chains that are larger than the maximum 

        % observable size.  The choice of how large to calculate is somewhat 

        % arbitrary. 
        num_calc = min(100*outbreak_size_limit,1e4); 
    else 
        num_calc = outbreak_size_limit; 
    end 

  

  
    % Outline of method: 
    % - Determine true pdf of chains 
    % - Adjust for imperfect observation 

  
    if r0 == 0 
        true_chain_pdf = zeros(1,num_calc); 
        true_chain_pdf(1) = 1; 
    else 
        j = 1:num_calc; 
        log_real_chain_pdf = gammaln(k*j+j-1)-gammaln(k*j)-gammaln(j+1)+(j-

1)*log(r0/k)-(k*j+j-1)*log(1+r0/k); 
        true_chain_pdf = exp(log_real_chain_pdf); 
    end 



  

  
    if (pobs_mode == 0 || pobs == 1) 
        chain_pdf = true_chain_pdf; 
        return; 
    end 

  
    j=1:num_calc; 
    % Calculate probability a chain is not observed at all 
    prob0 = sum(exp(j*log(1-pobs)+log(true_chain_pdf))); 
    denominator = 1- prob0; 
    switch pobs_mode 
        case 1 % i.i.d. case 
            for jj = 1:outbreak_size_limit 
                l = jj:length(true_chain_pdf); 
                numerator(jj) = exp(jj*log(pobs/(1-pobs))-

gammaln(jj+1))*sum(exp(log(true_chain_pdf(l))+l*log(1-pobs)+gammaln(l+1)-

gammaln(l+1-jj))); 
            end 
            chain_pdf = numerator/denominator; 
        case 2 % weighted cluster 
            j = 1:length(true_chain_pdf); 
            numerator = exp(log(true_chain_pdf(j))).*(1-(1-pobs).^j); 
            chain_pdf = numerator/denominator;      
end 

 

 


