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S.1 Reconstruction of H3N2 case report data

For the Netherlands, sentinel surveillance case report data from 1970 to 2009 were provided

by the National Institute for Health Services Research (NIVEL), and sentinel flu virolog-

ical type and subtype counts from 1994 to 2009 from the National Institute for Public

Health and the Environment (RIVM) [1,2]. Case report and virological data were collected

through the Dutch sentinel general practitioner (GP) network. The sentinel GP network

in the Netherlands is nationally representative by age, gender, regional distribution and

population density, and the population varied between approximately 106,000 and 134,000

registered patients. ILI incidence is defined as the number of people who consulted their GP

with ILI in a week divided by the population of GPs practices which reported the consulta-

tion numbers of the same week. ILI cases are defined by fever (ě 38.0˝C), sudden onset, and

cough, sore throat, running nose, frontal headache, retrosternal chest pain or muscle pain (see

also www.nivel.nl/peilstations). The virological data considered here correspond to patients

that met ILI case definitions. Both data sets are reported by week, from Monday through

Sunday, and information on age, gender and region was neglected in the present study. For

France, weekly sentinel surveillance case report data from 1985 to 2009 was obtained from

the ’Sentinelles’ network (INSERM, UPMC) (http://www.sentiweb.frSentinelles network),

and weekly virological type and subtype counts of positive ILI specimen from 1997 to 2008

were downloaded from Flunet (http://www.who.int/influenza/gisrs laboratory/flunet/en/).

For the United States, weekly nation wide case report data and virological data of posi-

tive specimen from 1997 to 2008 were obtained from the Center for Disease Control and

Prevention, USA (http://www.cdc.gov/flu/weekly/fluactivitysurv.htm).

For the Netherlands, type and subtype specific case report time series from 1994 to 2009

were estimated with a regression model that relates expected weekly ILI counts to weekly

virological type and subtype counts. We found that the variability in the NIVEL case report

data is appropriately described under an integer count model, and there was substantial

evidence for overdispersion in explaining the spread of the residuals. To exclude multiplicity

effects, we used a Negative Binomial model with identity link [3]. The virological surveillance

data set includes weekly counts of ILI specimen that tested negative, which allowed us to

model the baseline of negative ILI case reports explicitly. Compared to using a smooth,

seasonally forced baseline function as is typically done [4, 5], this approach led to slightly

higher estimates of total incidence in winter seasons. This is because the baseline is not

constrained to increase in winter seasons. Our initial regression model

yt „ NegBinpµt, kq

µt “ β0 ` β1rA(H1N1)ts ` β2rA(H3N2)ts ` β3rBts ` β4rRSVts ` β5rNegts
(S1)

consistently overestimates total ILI past 2005, see Figure S1. We found that this trend

coincides with broad changes in relative sampling effort, which we defined as the number of

ILI cases per virological specimen count. Figure S1B illustrates broad changes in sampling
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effort with a lowess fit. To adjust for broad changes in sampling effort, we model high

sampling effort in an ad-hoc fashion with a binary variable Sh
t that equals one if the lowess

curve in Figure S1B is above 4.5, and zero otherwise. Thus, a simple way to account for the

interaction of the previous covariates with sampling effort is the regression model

yt „NegBinpµt, kq

µt “ β0 `

rSh
t s

´

βh
1 rA(H1N1)ts`β

h
2 rA(H3N2)ts`β

h
3 rBts`β

h
4 rRSVts`β

h
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¯

`
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t s
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lw
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lw
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¯

.

(S2)

Figure S1C displays the estimated type and subtype specific incidence time series under

model (S2), and Figure S1D (red) illustrates that this model explains the variation in case

report data more homogeneously than model (S1). The difference ∆S1,S2 in the Akaike

information criteria of models (S1) and (S2) is 93. Thus, accounting for broad changes

in sampling effort leads to improved model predictions and improved model fit. While

more refined statistical approaches to account for changes in sampling effort are possible

in principle, the broad adjustment in terms of a binary categorical variable in model (S2)

is sufficient for our purposes, particularly in comparison to the marked differences between

estimated H3N2 incidence time series across countries.

Alternative estimation methods can have a profound effect on the magnitude and the

shape of the estimated type and subtype specific time series [5]. We also compared the H3N2

time series under model (S2) to an alternative estimate derived under a standard Serfling

regression model [4]. Specifically, we first reconstructed a baseline seasonal ILI time series

from interannual ILI counts with the Negative Binomial Serfling regression model

yt „ NegBinpµt, kq

µt “ β0 ` β1t` β2t
2 ` β3 cosp2πt{52q ` β4 sinp2πt{52q.

(S3)

Existing estimates of the timing and the duration of flu seasons were used to define the

interannual period [6]. Next, we defined excess ILI as the difference between total ILI and

predicted baseline ILI during epidemic periods as in [4], and took the weekly proportion

of H3N2 virus counts among all specimen that tested positive in the respective week to

reconstruct a weekly H3N2 excess ILI time series. Figure S2A illustrates that this excess

H3N2 ILI time series is in broad agreement with the estimate under model (S2).

For France and the United States, we estimated H3N2-specific case report time series

from 1997 to 2009 with the above Serfling approach. Excess ILI and H3N2 excess ILI are

illustrated in Figures S2B-C for both countries. We observed large variations in relative sam-

pling effort over time, which precluded the application of the multiple regression model (S1).

The reconstructed weekly H3N2 time series across countries are compared in Figure S2D,

and differ in magnitude and interannual variatiability, see Figure 1 and Table 1.
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Figure S1. Estimated type and subtype specific surveillance times series in the
Netherlands. (A) Estimated weekly type and subtype time series under the Negative
Binomial multiple regression model (S1) with identity link. Total ILI is overlaid (black).
Past 2005, total ILI is overestimated. (B) Weekly time series of relative sampling effort
(see main text), and fitted smooth lowess curve (red). Past 2005, relatively more
virological specimen were collected. We arbitrarily classified into low and high relative
sampling effort Sh

t (red dashed line). (C) Estimated weekly type and subtype time series
under the Negative Binomial multiple regression model (S2) that accounts for changes in
Sh
t ; same color coding as in (A). (D) Comparison of the residuals under model (S1) (black)

and (S2) (red). Past 2005, model (S2) does not overestimate total ILI.
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Figure S2. Comparison of H3N2 time series estimates. (A) H3N2 times series for
the Netherlands, estimated with the regression model (S2) (blue) and the Serfling model
(S3) (red). (B) H3N2 time series for France, estimated with the Serfling model (S3) (pink)
and total excess ILI (black). (C) H3N2 time series for the USA, estimated with the
Serfling model (S3) (turquoise) and total excess ILI (black). (D) The estimated H3N2 time
series across countries that underlie the summaries displayed in Figure 1 and Table 1
(same color codes).
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S.2 Reconstruction of the H3N2 haemagglutinin phylogeny

Sequences of the HA1 domain of the human influenza subtype H3N2 haemagglutinin gene

with at least 987 nucleotides were downloaded from the Influenza Virus Resource of Gen-

Bank, and only non-lab strains of known geographic origin with at least partially specified

dates between 1968 and 2009 were retained. These sequences were aligned with ClustalW

v2.0.10 under default parameters, and the alignment was further manually curated to correct

for obvious misplacements. A subset of 776 aligned sequences of Western European origin

was taken to reconstruct the HA1 phylogeny with BEAST v1.6.1. Partially missing Gen-

Bank dates were imputed from the empirical distribution of fully specified GenBank dates,

which showed a marked bias for winter seasons. Using these GenBank dates as the sam-

pling times of the respective H3N2 strains, BEAST was run under the GTR+I+Γ nucleotide

evolution model with different molecular clocks and different population demographic pa-

rameters. BEAST MCMC parameters were fine-tuned from pilot runs, and a burn-in period

of 2.5 million MCMC iterations was removed. Table S1 summarizes the effect of different

assumptions on population demography and molecular clocks on the estimated marginal log

likelihood and the average clock rate as well as the coefficient of variation thereof. The

constant clock assumes that all branches of the HA1 phylogeny evolve at the same rate, and

results in relatively low clock rates. Generally higher clock rates with substantial variability

among lineages are estimated with relaxed clocks, and lead to better marginal log likeli-

hoods. Thus, we considered further only the BEAST trees inferred under relaxed molecular

clocks and a piecewise constant skyline (bold in Table S1). We computed respective max-

imum clade credibility trees with TreeAnnotator v1.6.1, and found that the corresponding

phylogenetic summaries divergence, diversity, lineages, TMRCA did not differ substantially,

see Figure 1 and Table 1.

Table S1. Comparison of estimated HA1 phylogenies of Western European
H3N2 strains, 1968-2009

population molecular marginal average cv
parameter clock log clock clock

likelihood rate rate
(/site/yr)

const const -17040 3.5ˆ 10´3 -
const Exponential -16740 4.5ˆ 10´3 0.95
const log normal -16820 3.9ˆ 10´3 0.67

skyline const -17030 3.5ˆ 10´3 -
skyline Exponential -16724 4.5ˆ 10´3 0.94
skyline log normal -16800 3.8ˆ 10´3 0.62

For different population demographic parameters and molecular clocks, posterior mean
estimates from the BEAST MCMC trees after burn-in are reported. As an alternative to a
constant effective population size, a piecewise constant Bayesian skyline of 20 groups was
used.
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Table S2. Gelman-Rubin convergence diagnostics for the MCMC output under
the SEIRS model and the epochal evolution model (Figure 3 and Figure 5
respectively)

R0 1{γ ρ s ιs ζ Nœ ϕÓ ϕœ mÓ mœ σi´1,i λ

Figure 3 1.02 1.01 1.01 1.02 - 1.04 1.04 1.01 1.03 1.00 1.01 - -
Figure 5 1.13 1.02 1.02 1.07 - 1.07 1.05 1.06 1.08 1.02 1.03 1.03 1.01

S.3 Two-tier MCMC algorithm

Simple ABC rejection samplers are computationally inefficient whenever the posterior den-

sity πτ pθ|xq is markedly different from the prior density πpθq [7]. We expect this situation

in most phylodynamic applications. Several MCMC and sequential importance sampling

algorithms are available to improve computational efficiency [8, 9]. These algorithms must

be run for some time, or “burn-in”, until samples from the ABC target density are gener-

ated. Phylodynamic simulations can be time consuming, particularly when the mutation

rate is high. To reduce the number of simulations during burn-in, we use an MCMC sampler

exactly as the one in Figure 2, but with a standard annealing scheme on the tolerances τk

and on the variance of the proposal density that updates at acceptance [10]. In addition,

a suitable choice of initial values θ0 can improve the convergence and overall runtime of

Monte Carlo algorithms. Here, we exploit the two-tier structure of phylodynamic models

of the form (5) to generate initial values in a two stage process. Starting values for the

parameters in the first tier (5a-5b) of a phylodynamic model are randomly chosen, and the

first tier is fitted to summaries of surveillance data with algorithm mABC. Next, a set of

parameter values from the posterior distribution under the summaries of the surveillance

data is randomly chosen, considered fixed, and augmented by randomly chosen parameter

values required in the second tier (5c-5d). Then, the second tier is fitted to the phylogenetic

summaries with algorithm mABC. A set of parameter values from the posterior distribution

under the phylogenetic summaries and the fixed tier 1 parameters is randomly chosen as

initial value θ0.

We applied the MCMC algorithm in Figure 2 with annealing on the tolerances τk and the

diagonal covariance matrix of the Gaussian proposal density. Here, the annealing schemes

were updated at acceptance events. Since the MCMC sampler updates only a single particle

in relation to its previous value, convergence to the target density is typically reached quickly.

To assess the convergence of the above algorithm, we run mABC in parallel and compare

the variability of the generated Markov chains within a run to the variability across runs.

The Gelman-Rubin diagnostic was computed [11], and convergence was rejected when the

diagnostic exceeded 1.2 (see Table S2). The acceptance probabilities of the MCMC sampler

in Figure 2 are typically below 5% and the algorithm may occasionally get stuck in the tails

of the target density as in Figure 3A [12]. As further detailed in the technical report [13],
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we suggest using a sequential importance sampler after convergence to quickly replenish

effective sample sizes. Here, we only used the above MCMC sampler.

S.4 Calculating the effective reproductive number from model sim-

ulations

We showed that the basic reproductive number R0 under a phylodynamic model can be

substantially larger than the effective reproductive number Reff when loss of immunity due

to the antigenic evolution is accounted for, see Figure 3 and Figure 5. In this section, we

outline how Reff was back-calculated from model simulations.

We used simulated daily total population-level incidence data in the seasonally forced

sink population to obtain reproductive numbers that are comparable to empirical estimates

of Reff of H3N2 epidemics in the Northern Hemisphere. Growth rates cannot be well esti-

mated when incidence is low in summer seasons, and were therefore calculated only when

incidence increased above a tolerance of 10% of the following peak as illustrated in Fig-

ure S3. Remaining noise was smoothed with a sliding window of two weeks as in [14], and

the largest growth rate in each season was used to estimate seasonal effective reproductive

numbers under the generation time distribution specified by the phylodynamic model [15].

In particular this implied that estimates of Reff always exceed one. Figure S3 illustrates that

typical estimates of peak seasonal Reff from simulated daily population-level incidence data

are fairly robust to the assumed shape of the generation time distribution and the degree of

smoothing.

In the main text, we report the average of the seasonal effective reproductive numbers

arising under an Exponentially distributed incubation period with a mean of 0.9 days, and an

Erlang distributed infectiousness period with shape parameter 2 and a mean of 1.8 days [15].
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Figure S3. Typical estimates of peak seasonal Reff under the fitted SEIRS
model. (A) Simulated incidence in the sink population under R0 “ 3, 1{φ “ 0.9,
1{ν “ 1.8, 1{γ “ 8.5, Nœ “ 1.2ˆ 108, 1{µœ “ 50, ϕÓ “ 0.4, ϕœ “ 0.01, mÓ “ 7.7ˆ 106,
mœ “ 0.04. (B) Corresponding growth rate in winter seasons (grey), and two-week sliding
window (red). (C) Estimated peak seasonal Reff under a fixed generation time of 2.8 days,
and different generation time distributions and smoothing intervals. For the
susceptible-infected-recovered (SIR) model, generation time follows an Exponential
distribution. For the susceptible-exposed-infected-recovered (SEIR) model, the mean
incubation period was set to 0.9 days, and the average time an individual remained
infectious was set to 1.8 days. We considered two cases, first the infectiousness period was
assumed to follow an Exponential distribution and second an Erlang distribution with
shape parameter set to 2 as in the main text.
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S.5 Choosing basic features of H3N2 sequence and incidence data

S.5.1 Robust summaries of H3N2 associated case report data

Interpandemic H3N2 case report data in Northern temperate regions are broadly character-

ized by explosive seasonal epidemics in winter months and substantial irregular interannual

variation [1]. Particularly the magnitude of reported disease incidence varies across coun-

tries, likely reflecting differences in reporting practices and/or health-seeking behavior, and

we identified summaries of H3N2 case report data that are largely insensitive to these dif-

ferences (see Figure 1 and Table 1). A robust measure of the magnitude in interseasonal

variation is the standard deviation in the log ratio of consecutive seasonal case report at-

tack rates because it is based on fractional temporal information in cumulated case report

data (σ-attack). To capture the irregularity in interseasonal variation, we compute the au-

tocorrelation in case report peaks for the first few lag years (correlation). Autocorrelation

coefficients at the same lag year can vary largely, also because the H3N2 time series is rela-

tively short. We only use the correlation to penalize against strong periodic model behavior;

see Table 1. Among other possibilities, the mean seasonal attack rate of reported cases (µ-

attack) describes disease magnitude well and is informative of the country-specific reporting

rate ρ. Finally, we quantify the explosiveness of winter epidemics with their average dura-

tion at half their peak size (explosiveness) to escape substantial uncertainty in identifying

the onset and end of H3N2 seasons.

S.5.2 Inference with and without population level incidence data

In general, surveillance time series data alone is not sufficient to estimate both unknown

reporting rates and the transmission parameters R0, 1{γ of a communicable disease that

experiences waning immunity [16]. Here, we show that relatively vague information on

population-level incidence data is sufficient to disentangle the reporting rate from the trans-

mission parameters when the generation time distribution is assumed known. For H3N2, we

consider the largest seasonal population-level attack rate in the sink population (pop-attack).

This summary is less sensitive to differences in periodic model behavior than the average

population-level attack rate, and was favored in our analysis because the fitted SEIRS model

showed strong periodicity.

For simplicity, we consider the first tier of the SEIRS model and fit it to the epidemio-

logical summaries µ-attack, σ-attack, correlation, explosiveness and pop-attack as described

in Table 1 under different specifications of the weighting scheme for pop-attack. We employ

the same prior densities as in Table 2.
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Figure S4. Parameter estimates for R0, 1{γ of the first tier of the spatial
SEIRS model under broader weighting schemes with respect to pop-attack. We
interfaced the first tier of the SEIRS model with the epidemiological summaries described
in Table 1, broadening only τ` of pop-attack from (A) 0.05 to (B) 0.08, (C) 0.1, (D) 0.13.
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incidence is allowed to differ more broadly from empirical estimates.
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Table S3. Estimated epidemiological model parameters of the first tier of the SEIRS model in the absence of
phylogenetic summaries

mean˘std. dev., 95% conf. interval of posterior density based on

pop-attack Indicator weighting scheme,
τ´ “ ´0.1 τ´ “ ´0.1 τ´ “ ´0.1 τ´ “ ´0.1
τ` “ 0.05 τ` “ 0.08 τ` “ 0.1 τ` “ 0.13

model
parameter

R0 2.46˘0.80, [1.39, 3.74] 3.20˘0.79, [1.46,4.44] 4.93˘1.86, [1.48,7.66] 5.00˘2.01, [1.95,7.78]

Reff
‹ 1.26˘0.07, [1.16, 1.38] 1.25˘0.05, [1.16, 1.35] 1.27˘0.06, [1.18, 1.39] 1.25˘0.05, [1.17, 1.34]

1{γ 9.1˘2.7, [4.6, 14.0] 11.6˘3.8, [5.0, 16.7] 16.3˘6.4, [6.2, 29.7] 25.4˘7.3, [13.0, 36]

Nœ 3.26˘1.6, [0.74, 5.69] 3.36˘1.61, [0.75, 5.71] 3.47˘1.56, [0.91, 5.79] 3.12˘1.52, [0.83, 5.64]
ˆ108 ˆ108 ˆ108 ˆ108

ϕÓ 0.39˘0.13, [0.18, 0.59] 0.38˘0.13, [0.17, 0.58] 0.40˘0.12, [0.18, 0.58] 0.38˘0.14, [0.16, 0.59]

ϕœ 0.009˘0.01, [0, 0.02] 0.012˘0.008, [0,0.02] 0.011˘0.009, [0,0.02] 0.012˘0.007, [0,0.02]

mÓ 9.5˘3.4, [3.6, 14.4] 9.7˘3.4, [3.8, 14.4] 9.5˘3.3, [3.9, 14.4] 9.6˘3.3, [4.1, 14.6]
ˆ106 ˆ106 ˆ106 ˆ106

mœ 0.05˘0.03, [0.01, 0.1] 0.06˘0.03, [0.01, 0.1] 0.05˘0.03, [0.01, 0.1] 0.05˘0.03, [0.01, 0.1]

ρ 0.16˘0.08, [0.06, 0.31] 0.19˘0.10, [0.07, 0.35] 0.24˘0.13, [0.08, 0.47] 0.33˘0.15, [0.12, 0.59]

summary
error

µ-attack -0.69˘0.42, [-1.24, 0.07] -0.67˘0.40, [-1.27, 0.13] -0.69˘0.43, [-1.25, 0.05] -0.71˘0.43, [-1.26, 0.13]

σ-attack -0.38˘0.38, [-0.69, -0.18] -0.38˘0.37, [-0.69, 0.16] -0.24˘0.39, [-0.68, 0.16] -0.40˘0.39, [-0.69, 0.15]

explosiveness -0.22˘0.19, [-0.55, 0.05] -0.24˘0.20, [-0.56, 0.04] -0.24˘0.22, [-0.57, 0.09] -0.27˘0.22, [-0.58, 0.09]

correlation -0.73˘0.24, [-0.85, -0.29] -0.79˘0.15, [-0.85, -0.58] -0.67˘0.31, [-0.85, 0.11] -0.75˘0.18, [-0.85, -0.39]

pop-attack 0˘0.04, [-0.07, 0.05] 0.04˘0.04, [-0.05, 0.08] 0.07˘0.04, [-0.01, 0.10] 0.10˘0.03, [0.05, 0.13]

‹ Reff is not a model parameter and calculated from simulated incidence time series.
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Figure S5. Parameter estimates for s, Nœ of the second tier of the spatial
SEIRS model with and without lineages. We fixed the parameters corresponding to
the first tier of the SEIRS model and interfaced (s, ζ, Nœ) with the phylogenetic
summaries described in Table 1 (A). We then repeated inference without the lineages (B).
Two-dimensional histograms in (s, Nœ) of the estimated ABC target density illustrate that
the source population size cannot be jointly estimated with s and ζ when lineages is
excluded. We ran four MCMC chains in parallel, and the first tier of the SEIRS model was
fixed to the four parameter sets R0 “ 3, 2.5, 2.6, 2.7, 1{φ “ 0.9, 1{ν “ 1.8,
1{γ “ 9.6, 6.5, 8.1, 9.3, ρ “ 0.11, 0.12, 0.07, 0.17, 1{µœ “ 50, ϕÓ “ 0.58, 0.31, 0.24, 0.54,
ϕœ “ 0.02, 0.003, 0.004, 0.002, mÓ “ 9.9, 7.9, 13.1, 12ˆ 106, mœ “ 0.02, 0.08, 0.004, 0.009.
These parameters were chosen as described in the Methods section.

Table S3 and Figure S4 illustrate how the transmission parameters and the reporting

rate of the fitted epidemiological model change with a broader pop-attack weighting scheme.

The 95% confidence intervals of R0, 1{γ and ρ increase as the pop-attack weighting scheme

discriminates less against small maximum population-level attack rates, and the joint pos-

terior density of the transmission parameters R0, 1{γ turns increasingly irregular. The

tolerances τ´ “ ´0.1 and τ` “ 0.05 in Figure S4A correspond to largest population-level

attack rates between 15-30%, which is well in line with epidemiological estimates of the

population-level attack rate of influenza H3N2 in the Northern Hemisphere [17]. Larger τ`

allow for population-level attack rates that are known to be too low, and available data do

not support to choose smaller τ` to the best of our knowledge.

S.5.3 Summaries of H3N2 sequence data

Based on the estimated HA phylogeny, we initially summarized H3N2’s evolution with its

fast divergence and its limited average genetic diversity across seasons (see Figure 1 and

Table 1). Specifically, divergence is captured as the slope through the number of nucleotide

substitutions of sampled sequences to the founder sequence across time (divergence). To
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Figure S6. Parameter estimates for s, Nœ of the second tier of the spatial
epochal evolution model with and without lineages. We fixed the parameters
corresponding to the first tier of the epochal evolution model and interfaced (s, ζ, Nœ)
with the phylogenetic summaries as detailed in Table 1 (A). We then repeated inference
without the lineages (B). Two-dimensional histograms in (s, Nœ) of the estimated ABC
target density illustrate that the source population size is broader when lineages is not
included. We ran four MCMC chains in parallel, and the first tier of the epochal evolution
model was fixed to the four parameter sets R0 “ 22, 14, 20, 24, 1{φ “ 0.9, 1{ν “ 1.8,
1{γ “ 274, 276, 375, 377, ρ “ 0.42, 0.61, 0.72, 0.86, 1{µœ “ 50, ϕÓ “ 0.12, 0.48, 0.32, 0.22,
ϕœ “ 0.02, 0.01, 0.02, 0.01, mÓ “ 3.9, 9.3, 4.9, 12.5ˆ 106, mœ “ 0.02, 0.04, 0.07, 0.03. These
parameters were chosen as described in the Methods section.

reflect genetic diversity, we compute the average pairwise diversity of any two sequences

sampled in the same season (diversity). The number of dated HA sequences available before

1990 is very small, so that these years effectively do not contribute to the diversity. To make

this sampling effect more apparent, all phylogenetic summaries except the divergence are

only computed on the period 1991-2009.

We could not simultaneously estimate the source population size, the mutation rate and

the residual selection parameter from H3N2’s divergence and diversity alone. Here, we show

that conditioning also on the lineages of the HA phylogeny is sufficient to estimate Nœ,

ζ and s. To this end, we interfaced these parameters with the phylogenetic summaries as

described in Table 1 under both models, while keeping the epidemiological model parameters

fixed. Figures S5-S6 illustrate that estimates of Nœ are broader when information on H3N2’s

lineages is not used. Since pop-attack is much lower under the fitted epochal evolution model,

an overall larger source population size is required to yield a similar number of new genetic

variants.

Finally, we found that the TMRCA’s are a useful summary to avoid simulated phy-

logenies with reasonable divergence, diversity and lineages but deep phylogenetic branch-
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Figure S7. Parameter estimates for s, ζ of the spatial epochal evolution model
with and without TMRCA. We repeated inference with all summaries as in Table 1 but
without TMRCA. (A) Figure 5F for comparison. (B) Two-dimensional histogram of (s, ζ)
of the estimated ABC target density without TMRCA.

ing. Figure S7 illustrates phylodynamic inference of the epochal evolution model with and

without TMRCA. The selective advantage between replacing viral variants in the epochal

evolution model is strong enough to limit the average pairwise diversity in simulated phylo-

genies, but fails to exclude deep phylogenetic branching. Thus, when inference conditions on

TMRCA, substantial residual selection pressures must be included in the epochal evolution

model. When deep phylogenetic branching is not explicitly penalized, the estimated residual

selection parameter is much lower.

S.6 Inference and model assessment on simulated data

S.6.1 Parameter inference

To assess the accuracy of ABC phylodynamic inference in the context of the flu example, we

first generated one data set under the SEIRS model. Model parameters were set to R0 “ 3.5,

1{φ “ 0.9, 1{ν “ 1.8, 1{γ “ 10, ρ “ 0.08, Nœ “ 2ˆ 108, 1{µœ “ 50, ϕÓ “ 0.41, ϕœ “ 0.006,

mÓ “ 4 ˆ 106, mœ “ 0.01, ζ “ 1.5, s “ 0.09, a sample of the posterior distribution under

the summaries and tolerances in Table 1. Figure S8 illustrates ABC parameter estimates

for this simulated data set, using summaries and tolerances as in Table 1. Estimates of R0,

1{γ, ρ were fairly broad, and broader than those obtained from inference against the real flu

data set. We failed to estimate Nœ, and the estimates of s, ζ did not correspond well to the

true values. As on the real data study, ϕÓ, ϕœ, mÓ, mœ could not be estimated. The reason

for such poor parameter inference is that the summary errors against data simulated from

the same model are much smaller than those computed against real data. Thus, a broader
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set of parameters is now acceptable when the same tolerances are used.

Using tighter tolerances than those in Table 1, we could accurately estimate the same pa-

rameters as compared to inference on the real data (except Nœ). Using (the values used in

the main text are added in brackets) τ´
pop-attack “ ´0.03 p´0.1q, τ`

pop-attack “ 0.03 p0.05q,

τ´
σ-attack “ ´0.45 p´0.7q, τ`

σ-attack “ 0.35 p0.35q, τ´
µ-attack “ ´0.45 p´1.3q, τ`

µ-attack “

0.35 p0.35q, τ´
explosiveness “ ´0.35 p´0.6q, τ`

explosiveness “ 0.35 p0.35q, we obtained more

reliable estimates of R0, 1{γ, ρ as illustrated in Figure S9A. Next, we could obtain im-

proved estimates of s, ζ with tighter tolerances on the phylogenetic summaries, τ´
divergence “

´0.175 p´0.4q, τ`
divergence “ 0.175 p0.4q, τ´

diversity “ ´0.2 p´0.6q, τ`
diversity “ 0.2 p0.6q,

τ´
lineages “ ´0.025 p´1.3q, τ`

lineages “ 0.025 p1.3q, τ´
TMRCA “ ´0.75 p´3q, τ`

TMRCA “ 0.75 p3q;

see Figure S9B. We could not estimate an upper limit for Nœ. Tolerances must be cho-

sen in view of the error magnitude. If the error magnitude is considerably larger on real

data than on simulated data, then ABC parameter inference on real data with tolerances

τ‹ calibrated on simulated data will suffer from very low acceptance rates and will thus

be extremely unreliable. For example, the τ‹ of the phylogenetic summaries are smaller

than the errors between the SEIRS model and the H3N2 phylogeny, so that ABC parameter

inference against real data is impossible with these τ‹.

We further checked that ABC based on the summaries in Table 1 can accurately es-

timate a range of SEIRS model parameters with suitable tolerances, see Figure S10. In

general, for higher values of R0 smaller tolerances had to be chosen because differences in

population-level attack rates decrease. For relatively large tolerances, posterior distributions

were broad, but never inaccurate and reliable. We emphasise that often, it is not appro-

priate to set the tolerances to tight values τ‹ even when this is computationally feasible.

Available data may not support the use of narrow ABC tolerances τ‹. For example, it

is possible to use tighter tolerances on pop-attack than those in Table 1. The tolerances

τ´
pop-attack “ ´0.1, τ`

pop-attack “ 0.05 correspond to maximum population-level attack rates

between 15=30%, which is well in line current epidemiological estimates of population-level

attack rates between 10-20% [17]. Considerably tighter tolerances would result in some form

of overfitting.
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Figure S8. Parameter estimates of the spatial SEIRS model on data simulated from the spatial SEIRS model (case
R0 “ 3.5), using summaries and tolerances as in Table 1. One-dimensional histograms of the ABC fit using the summaries and
tolerances in Table 1. Four MCMC chains were started at overdispersed starting values, a burn-in period was removed and the
remaining samples are shown in color for each chain. True parameters from which the data set were generated are indicated in black.
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Figure S9. Parameter estimates of the spatial SEIRS model on data simulated
from the spatial SEIRS model (case R0 “ 3.5), using tighter tolerances than in
Table 1. One-dimensional histograms of the ABC fit using the summaries in Table 1 but
(A) tighter tolerances on µ-attack, σ-attack, pop-attack and (B) tighter tolerances on
divergence, diversity, lineages, TMRCA as detailed in the text. In both cases, four MCMC
chains were started at overdispersed starting values, a burn-in period was removed and the
remaining samples are shown in color for each chain. True parameters from which the data
set were generated are indicated in black.
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Figure S10. Parameter estimates of the spatial SEIRS model on data
simulated from the spatial SEIRS model (case A: R0 “ 1.3, case B: R0 “ 14),
using tighter tolerances than in Table 1. One-dimensional histograms of the ABC fit
against data generated with the parameters (A) R0 “ 1.3, 1{γ “ 5, ρ “ 0.08 and (B)
R0 “ 14, 1{γ “ 150, ρ “ 0.4 and all other parameters as before. We used the summaries in
Table 1 with tolerances (A) as in Figure S9A, and (B) τ`

pop-attack “ 0.002,

τ´
pop-attack “ ´0.002, τ`

σ-attack “ τ`
µ-attack “ τ`

µ-attack “ τ`
explosiveness “ 0.2,

τ´
σ-attack “ τ´

µ-attack “ τ´
µ-attack “ τ´

explosiveness “ ´0.2 and all others as before. MCMC
samples were generated as before, and true parameters from which the data set were
generated are indicated in black.
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Figure S11. Accuracy in estimating the inclusion probability ιs. One-dimensional
histograms of parts of the ABC fit against simulated data, case R0 “ 3.5, (A) without and
(B) with selection, see the text for details. Four MCMC chains were started at
overdispersed starting values and the epidemiological parameters were held fixed. The first
1000 iterations were discarded and histograms of the remaining samples are shown in color
for each chain. The correct value is indicated with a vertical black line.

S.6.2 Parameter selection

Next, we evaluated how reliable ABC can estimate if the selection parameter s should be

included in phylodynamic models of the form (5). We generated two data sets under the

SEIRS model with and without residual selection; parameters were (i) s “ 0, (ii) s “ 0.09,

and R0 “ 3.5, 1{φ “ 0.9, 1{ν “ 1.8, 1{γ “ 10, ρ “ 0.08, Nœ “ 2ˆ108, 1{µœ “ 50, ϕÓ “ 0.41,

ϕœ “ 0.015, mÓ “ 4 ˆ 106, mœ “ 0.01, ζ “ 1.5 in both (i) and (ii). The parameters of

scenario (i) correspond to the fitted SEIRS model in the main text, Figure 3. We used

ABC with the same summaries as in Table 1. Prior densities were chosen as in Table 2.

As before, the tolerances had to be tightened for reliable parameter inference. We used

the Indicator weighting scheme (3) for all summaries and the tolerances τ`
divergence “ 0.175,

τ`
diversity “ 0.2, τ`

lineages “ 0.035, τ`
TMRCA “ 0.4 and τ´

k “ ´τ`
k . Figure S11 illustrates

that the inclusion probability ιs can be reliably estimated. All other parameters are also
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well estimated, although credibility intervals are substantially broader under scenario (ii).

Notably, the variable selection prior penalizes large values of s so that the true values of s

can be expected to be somewhat larger than estimates thereof.

S.6.3 Model assessment

In light of our results on the epochal evolution model, we first verified that this model can be

accurately fitted to data generated from the same model, and that the associated summary

errors are then centred around zero. Incidence and phylogenetic data were generated under

the parameters R0 “ 20, 1{φ “ 0.9, 1{ν “ 1.8, 1{γ “ 180, ρ “ 0.75, σ “ 0.75, Nœ “ 4ˆ108,

1{µœ “ 50, ϕÓ “ 0.28, ϕœ “ 0.015, mÓ “ 8 ˆ 106, mœ “ 0.05, ζ “ 3, s “ 0.09, κ “ 2,

λ “ 380, which correspond well to the fitted epochal evolution model in the main text,

Figure 5. We used ABC with the same summaries as in Table 1. Prior densities were chosen

as in Table 2. As before, the tolerances had to be tightened to estimate parameters reliably,

again because the summary errors were here considerably smaller for a broader set of model

parameters. Figure S12A illustrates that R0, 1{γ, σ, ρ and λ could be accurately estimated

under the same tolerances as in Figure S9A (which are tighter than those in Table 1). Next,

again using tighter tolerances, we could obtain accurate estimates of the molecular genetic

parameters (see Figure S12B). All other parameters not shown had fairly broad posterior

distributions and could not be estimated. With the tolerances in Table 1, estimates of R0

had a 95% confidence interval of r7, 27s and a posterior mean at 16.9, and s, ζ could not be

estimated. Figure S12C shows that all the associated summary errors plotted in Figure 5I-L

are now close to zero, and Figure S12D shows that the same is true for all other summary

errors, indicating that the summary errors correctly indicate goodness of fit.

Finally, we verified that ABC with the summaries in Table 1 can detect discrepancies of

the SEIRS model in reproducing data generated under the epochal evolution model. Here,

we used the same tolerances as in Table 1, except for diversity: τ´
diversity “ ´1, τ`

diversity “ 1.

Figure S13A shows the ABC summary diagnostics that we used in the main text, and

Figure S13B shows all remaining ones. The correlation, diversity and TMRCA summary

errors deviate clearly from zero, indicating that the summary errors can correctly identify

model mismatch.
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Figure S12. Parameter estimates of the spatial epochal evolution model on
data simulated from the same model, using tighter tolerances than in Table 1.
One-dimensional histograms of parts of the ABC fit based on (A) tighter tolerances of the
epidemiological summaries (as in Figure S9A), and (B) tighter tolerances on the
phylogenetic summaries τ´

divergence “ ´0.2 p´0.4q, τ`
divergence “ 0.2 p0.2q,

τ´
diversity “ ´0.4 p´0.6q, τ`

diversity “ 0.4 p0.6q, τ´
lineages “ ´0.4 p´1.3q, τ`

lineages “ 0.4 p1.3q,

τ´
TMRCA “ ´0.5 p´3q, τ`

TMRCA “ 3 p3q; values of Table 1 added in parentheses. MCMC
samples were generated as before, and true parameters from which the data set were
generated are indicated in black. (C-D) 2-D histograms of the associated summary errors.
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Figure S13. Accuracy in detecting discrepancies of the SEIRS model when
fitted to simulations of the epochal evolution model. Two-dimensional histograms
of the nine-dimensional distribution of ABC summary diagnostics that correspond to
fitting the SEIRS model with the summaries in Table 1, see the text for details. (A)
Summary diagnostics shown in the main text for ABC analyses on real data, and (B)
diagnostics for all other summaries. Four MCMC chains were started at overdispersed
parameter values, the burn-in period was removed and all remaining samples were pooled
across chains to produce the histograms.

S.7 Inference with and without phylogenetic summaries

We analyzed if the phylogenetic summaries divergence, diversity, lineages and TMRCA have

any effect on estimates of the epidemiological parameters of SEIRS model. To this end, we

fitted the first tier of the SEIRS model to the epidemiological summaries µ-attack, σ-attack,

correlation, explosiveness and pop-attack in Table 1, using the same prior densities as in

Table 2.

Comparing Tables 2-3 to the first column in Table S3, we find that without the phylo-

genetic summaries, the fitted source-sink SEIRS model results in smaller basic reproductive

numbers 2.46˘0.80 and maximum population-level attack rates that are on average 15%˘4%

(3.03˘0.55 and 12%˘3% respectively when the full phylodynamic model is fitted). Because

lower incidence results in more narrow phylogenies, this discrepancy can be explained with

the addition of the phylogenetic summaries. To substantiate this explanation, we fitted the

tier 1 model under a relaxed pop-attack weighting scheme (τ` “ 0.08), which gave a distri-

bution of pop-attack posterior summary errors that is almost identical to the one obtained

with the phylogenetic summaries; see the second column in Table S3. The associated R0 is

estimated at 3.2˘0.79, which is very similar to the estimate obtained with the phylogenetic

summaries. Thus, the imposed penalties in the weighting scheme for narrow phylogenies (see
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Table 1) result in slight deviations to low maximum population-level attack rates, which im-

plies relatively high values of R0 when phylogenetic summaries are included. This implies

that conditioning on phylogenetic summaries has an effect on parameter inference even un-

der the SEIRS model, and the molecular genetic and epidemiological summaries are not

independent of each other.
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Figure S14. Phylodynamic inference and goodness-of-fit analysis of the
spatially homogeneous, SEIRS model (S4). (A-C) MCMC trajectories of the
estimated R0, ψ and the calculated Reff of four chains that were started at four two-tier
generated seeds (see Methods). (D-F) Two-dimensional histograms of parts of the ABC fit,
illustrating the correlations between the estimated parameter pairs (R0, 1{γ), (s, ζ) and
(ψ,ζ). Throughout, histograms were computed from all samples across the four chains
after burn-in. Color codings are separate for each subplot, with respective density values
indicated in the contours. (G-I) Two-dimensional histograms of parts of the joint density
of summary errors, illustrating the goodness of the fitted model with respect to the
correlation and interannual variability of the case report data, as well as the divergence,
diversity and the TMRCA’s of the HA phylogeny.
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S.8 Inference under models without spatial substructure

Figure 3H-I illustrate that the spatial SEIRS model can reproduce the divergence of H3N2’s

HA phylogeny. To illustrate that a geographically separated source population is required

to reproduce the divergence of H3N2’s HA phylogeny, we consider here the corresponding

SEIRS model in a seasonally forced, spatially homogeneous population that is, as before,

calibrated to represent the Netherlands. Leaving demographic stochasticity aside, H3N2

phylodynamics are described by

dS

dt
“ µpN ´ Sq ´ βt

S

N
pI `m

Î

N
q ` γpN ´ S ´ E ´ Iq

dE

dt
“ βt

S

N
pI `m

Î

N
q ´ pµ` φqE

dI1
dt
“ φE ´ pµ` 2νqI1

dI2
dt
“ 2νI2 ´ pµ` νqI2

dGk
dt

“
p1` s%k0qψI

`

ř

lp1` s%l0qGl
Gk ´

ψI´

ř

lGl
Gk ´ ζGk,

(S4)

where all parameters are as in (5) for the sink population, and I “ I1`I2, 1{φ is the average

duration of incubation, m is the number of visiting infected travelers, Î is the number of

infected individuals at disease equilibrium, and ψ ě 1 is an inflation factor. As we show

below, this inflation factor is necessary to reproduce the divergence of the HA phylogeny.

The second tier of (S4) thus corresponds to a first tier that is inflated by ψ.

The spatially homogeneous SEIRS model was fitted to the phylodynamic summaries as

described in Table 1. The inflaction factor is estimated at ψ “ 10.8 ˘ 8.2, and Figure S14

illustrates that with large ψ, the behavior of spatially homogeneous model is similar to

the behavior of the spatially heterogeneous SEIRS model. At smaller inflation factors, the

spatially homogeneous model fails to reproduce the divergence of H3N2’s HA phylogeny. The

Dutch population size is too small to reproduce the basic features of the HA phylogeny, and

the large inflation factor suggests that a viral reservoir with a population around 1.7ˆ 108

individuals is needed to match the basic features of H3N2 surveillance and molecular genetic

data in Table 1. This is well in line with the estimated size of the source population under

the spatial SEIRS model, Nœ “ 1.85˘ 1.2ˆ 108.

Table S4 lists the estimated parameters and summary errors. In particular, the 95%

credibility interval of the amplitude of seasonal forcing ϕ is [0.16, 0.6]. In the spatial SEIRS

model, we found that the strength of seasonal forcing is difficult to estimate because it

is correlated with the number of infected travelers from the source population, mÓIœ{Nœ,

which depends itself on mÓ as well as further epidemiological variables. Thus, we took the

95% credibility interval of ϕ to define a plausible parameter range for ϕÓ, see Table 2.
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Table S4. Estimated model parameters and summary errors under the
spatially homogeneous model (S4).

prior mean˘std. dev. and mean˘std. dev. and
density 95% conf. interval of 95% conf. interval of

estimated model estimated summary
parameters errors

R0 uninformative 2.58˘0.45, [1.81, 3.25] µ-attack -0.68˘0.43, [-1.24, 0.13]

Reff -‹ 1.12˘0.29, [0.77, 1.69] σ-attack -0.37˘0.27, [-0.69, 0.16]

1{φ 0.9 correlation -0.84˘0.01, [-0.85,-0.83]

1{ν 1.8 explosiveness -0.22˘0.14, [-0.54, 0.04]

1{γ uninformative 8.3˘1.8, [5, 10.9] pop-attack 0.01˘0.03, [-0.06, 0.05]

ρ uninformative 0.16˘0.07, [0.06,0.27] lineages -1.29˘0.19, [-1.61, -0.99]

s uninformative 0.14˘0.2, [0.01,0.66] divergence 0.22˘0.12, [-0.02, 0.38]

ιs uninformative 1˘0, [1,1] diversity -0.41˘0.15, [-0.59, -0.12]

ζ uninformative 2.7˘1.0, [1.6, 4.2] TMRCA -0.95˘0.18, [-1.26, -0.68]

N fixed to Dutch
demographic data,
http://statline.cbs.nl

µ fixed to Dutch
demographic data,
http://statline.cbs.nl

ϕ uninformative 0.36˘0.14, [0.16, 0.6]

m Up3ˆ 106, 15ˆ 106q; 10.9˘3.2, [8.5, 15]
encompassing lowest & ˆ106

highest annual records;
http://statline.cbs.nl

ψ Up1ˆ 108, 30ˆ 108q; 10.8˘8.2, [1, 28]
bounded above to keep ˆ108

simulations tractable

‹ Reff is not a model parameter and calculated from simulated incidence time series.

S.9 Sensitivity analyses

Our prior assumptions on the model parameter are listed in Table 2, along with a brief

justification. Here, we describe how sensitive our results in the main text are to changes

in the generation time 1{φ ` 1{ν, the birth rate µœ, the functional form of the antigenic

emergence rate h in Eqns. 5, and ϕœ.

Most importantly, we assume that the strength of seasonal forcing in the source popula-

tion is weak, ϕœ P r0, 0.02s. While plausible, there is considerable uncertainty in the strength,

timing and form of influenza’s seasonality in tropical regions [18]. Here, we show that the

epochal evolution model of major antigenic clusters is well in agreement with the summaries

in Table 1 if strong seasonal forcing is assumed in the source population, ϕœ ą 0.15. Es-

sentially, strong ϕœ leads to sufficiently severe genetic bottlenecks in which less favorable
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Figure S15. Phylodynamics under the spatial epochal evolution model with
weak seasonal forcing in the source population, ϕœ “ 0.03. (A) Reported H3N2
incidence time series in the sink population, by week. Observed data is shown in black and
simulated data in colors, with each color representing a major antigenic cluster. (B)
Corresponding weekly time series of the percentage susceptibles in the sink population.
(C) Simulated and observed case report seasonal attack rates, and (D) population level
incidence attack rates in the sink population. Simulated data now shown in blue. (E)
Histogram of pairwise nucleotide substitutions among sequences collected in the same
season. (F) Simulated HA phylogeny. (G) Simulated and observed monthly time series of
the number of lineages, and (I) simulated and observed monthly time series of TMRCA’s
of all phylogenetic lineages circulating in the same month.
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Figure S16. Phylodynamics under the spatial epochal evolution model with
weak seasonal forcing in the source population, ϕœ “ 0.05. (A-I) as in Figure S15.
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Figure S17. Phylodynamics under the spatial epochal evolution model with
weak seasonal forcing in the source population, ϕœ “ 0.07. (A-I) as in Figure S15.
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Figure S18. Phylodynamics under the spatial epochal evolution model with
weak seasonal forcing in the source population, ϕœ “ 0.1. (A-I) as in Figure S15.



31

A

1995 2000 2005 2010

0
20

0
40

0

IL
I /

 w
k 

/1
05

B

1995 2000 2005 2010

0.
10

0.
30

%
 s

us
ce

pt
ib

le
s

sink population

C

0.
00

0
0.

01
5

IL
I a

tta
ck

 r
at

e

1994/95 1999/00 2004/05 2009/10

sink population

D

0.
05

0.
15

IN
C

 a
tta

ck
 r

at
e

1994/95 1999/00 2004/05 2009/10

sink population

E

1995 2000 2005 2010

0
20

40
60

year

br
an

ch
 le

ng
th

s

F

200 150 100 50 0

nucleotide substitutions

G

1995 2000 2005

5
20

10
0

year

lin
ea

ge
s

I

1995 2000 2005

0
2

4
6

8

year

T
M

R
C

A
 in

 y
ea

rs

1

Figure S19. Phylodynamics under the spatial epochal evolution model with
weak seasonal forcing in the source population, ϕœ “ 0.15. (A-I) as in Figure S15.
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Table S5. Sensitivity of parameter estimates to alternative generation times
and different forms of the antigenic emergence rate function.

model SEIRS SEIRS SEIRS epochal epochal epochal

fixed
1{φ 1.8 2.3 2.7 1.8 2.3 2.7
1{ν 0.9 1.2 1.3 0.9 1.2 1.3
κ - - - 1 1 1

estimated mean˘std. dev. and 95% conf. interval

R0 2.4˘0.8 2.5˘0.9 2.7˘1 16.7˘4.5 18.7˘5.6 20.7˘5
[1.4, 3.7] [1.1, 4.6] [1.2, 4.6] [7.4, 25] [7, 29] [10, 30]

1{γ 9.1˘2.7 8.9˘2.8 8.9˘2.8 228˘97 240˘96 235˘92
[4.6, 14] [4.3, 14.6] [4, 14.7] [51, 390] [73, 390] [71, 391]

σi´1,i - - - 0.81˘0.05 0.79˘0.07 0.77˘0.06
- - - [0.71, 0.89] [0.66, 0.92] [0.66, 0.86]

ρ 0.16˘0.08 0.17˘0.07 0.17˘0.07 0.63˘0.21 0.57˘0.22 0.6˘0.2
[0.06, 0.31] [0.05, 0.29] [0.05, 0.32] [0.26, 0.97] [0.21, 0.95] [0.24, 0.97]

model epochal epochal epochal epochal epochal epochal

fixed
1{φ 1.8 2.3 2.7 1.8 2.3 2.7
1{ν 0.9 1.2 1.3 0.9 1.2 1.3
κ 2 2 2 2‹ 2‹ 2‹

estimated mean˘std. dev. and 95% conf. interval

R0 16.6˘4.3 18.7˘5.2 21.1˘4.6 17.8˘4.5 18.6˘5.8 20.2˘5
[7.5, 25] [8.2, 28.5] [11.6, 29] [8.6, 26] [7.3, 28] [9.4, 29.3]

1{γ 220˘103 230˘102 244˘92 219˘104 205˘95 215˘104
[60, 391] [38, 387] [70, 395] [38, 388] [55, 380] [31, 386]

σi´1,i 0.78˘0.05 0.77˘0.06 0.74˘0.06 0.73˘0.05 0.71˘0.05 0.70˘0.05
[0.68, 0.88] [0.65, 0.86] [0.63, 0.84] [0.63, 0.8] [0.62, 0.81] [0.61, 0.83]

ρ 0.58˘0.22 0.56˘0.22 0.56˘0.21 0.63˘0.23 0.62˘0.22 0.5˘0.23
[0.22, 0.98] [0.2, 0.96] [0.22, 0.97] [0.2, 0.98] [0.22, 0.97] [0.16, 0.98]

‹ In these cases, the antigenic emergence rate (S5) was used.

antigenic variants go readily to extinction. Therefore, and in contrast to the analysis in the

main text, the duration of cluster-specific immunity 1{γ is not constrained by the shape

of the phylogeny and can be set small. Figure S15-S19 illustrate phylodynamics under the

epochal evolution model with the parameters R0 “ 3, 1{γ “ 9, 1{φ “ 0.9, 1{ν “ 1.8, ρ “ 0.1,

Nœ “ 2ˆ 108, 1{µœ “ 50, ϕÓ “ 0.25, mÓ “ 9.7ˆ 106, mœ “ 0.05, ζ “ 3.3, s “ 0.09, κ “ 2,

λ “ 180 but varying ϕœ. For ϕœ ą 0.15, 1{γ can be relatively short, so that R0 can be much

smaller too and hence the simulated pop-attack are within the range of empirical estimates.

Recent reanalyses of influenza infections in household studies estimate a generation time

around 2.7 days, while higher estimates around 4 days have also been reported [14, 19]. To

evaluate if higher generation times up to 4 days could influence the fit and the goodness of

fit of the both models considered, we initially considered the first tier only. The first tiers
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of both models were fitted to the epidemiological summaries in Table 1, using the same

respective tolerances and weighting schemes. In order to fit the epochal evolution model

without computationally expensive phylogenetic simulations, we also generated the annual

time series of the number of coexisting antigenic clusters and computed their average value in

1968-2002. To favor strain replacement, on average no more than 1.5 clusters were allowed to

coexist in any season. Table S5 demonstrates that higher mean generation times 1{φ`1{ν “

2.7, 3.5, 4 result in slightly larger estimates of R0, and do not affect the fit to any of the other

parameters that can be estimated with the epidemiological summaries. Goodness of fit was

insensitive to changes in the generation time. Consequently, full phylodynamic inference

including phylogenetic summaries was not run.

Recent models of influenza evolution and epidemiology assume that antigenic variants

emerge at a rate h that is either constant or increases through time [20, 21]. Following the

argument in [20], it is plausible that h might alternatively depend on cumulative incidence

rather than time, i.e.

hpt, tei q “
κ

λ

˜
řt
s“tei

I`
i psq

λ

¸κ´1

. (S5)

To evaluate if a constant antigenic emergence rate or dependence of h on cumulative inci-

dence might influence the fit and the discrepancies of the fitted epochal evolution model, we

initially considered only the first tier for computational reasons. As above, we required that

the average number of coexisting antigenic clusters stays below 1.5. Table S5 illustrates

that the key epidemiological parameters that can be estimated with the epidemiological

summaries in Table 1 are not sensitive to using κ “ 1 or (S5).

Finally, we also analyzed if a higher birth rate in the source population changes param-

eter inference or model assessment. Briefly, a lower birth rate µœ increases the extinction

probability of phylodynamic simulations, especially for the fitted epochal evolution model,

where infrequent but relatively strong cluster invasions lead to pronounced genetic bot-

tlenecks, see Figure 6H. For an average lifespan of 80 years, more than 50% of all model

simulations go extinct. A lower average lifespan than the 50 years used here reduced the

extinction probability of phylodynamic simulations, but implied lineages that were 2-3 times

as thick as in the observed HA phylogeny.
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Figure S20. Reproducibility of interannual variability in H3N2 incidence for
increasing nclust in 1968-2002. The first tier of the epochal evolution model was fitted
with ABC to features of H3N2 surveillance data as specified in Table 1 under different
assumptions on the number of antigenic clusters in 1968-2002: (A) nclust “ 0, (B)
nclust “ 3˘ 1, (C) nclust “ 5˘ 1, (D) nclust “ 7˘ 1, (E) nclust “ 11˘ 2, (F)
nclust “ 17˘ 4. (A) is the same as Figure 3G, and (E) is the same as Figure 5I. To
circumvent computationally expensive phylogenetic simulations, we here generated the
annual time series of the number of coexisting antigenic clusters and computed their
average value in 1968-2002. To favor strain replacement, on average no more than 1.5
clusters were allowed to coexist in any season. Four MCMC chains were run in parallel,
burn-in periods were pruned and the remaining samples were pooled. The two-dimensional
histograms between correlation and σ-attack indicate that the interannual variability in
H3N2 incidence is increasingly better reproduced with a larger number of antigenic
clusters that replace each other. Under the epochal evolution model, the turnover of more
than 10 clusters, or equivalently 1 replacement event every 3-4 years, results in irregular
incidence time series that are consistent with H3N2’s interannual variability.
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