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Text S1: Additional Derivations

Expected Phylogenetic Diversity and the Edge-Length Abundance Distribution

We define sampled phylogenetic diversity to be the total branch length in a sampled tree,
and we describe a sampled tree by a set of variables, gi, where i runs over each edge in the
metacommunity tree and each gi can be either zero or one, corresponding to whether the edge
also appears in the sampled tree.

We define the probability of finding a particular sampled tree as P (g1, g2....gkmax), where kmax is
the number of edges in the metacommunity tree. An edge contributes Si to the expectation value
of total branch length if gi = 1 and zero if gi = 0, and so to obtain the expected phylogenetic
diversity for a given sampling scheme we wish to compute the expectation value of the following
variable:

H(g1, g2....) =
∑
i

hi(gi) (1)

where

hi(1) = Si

hi(0) = 0. (2)

This expectation value is then (as for any arbitrary function of the variables gi):

E(PD) =
∑

g1,g2...gkmax

H(g1, g2....)P (g1, g2....gkmax)

=
∑

g1,g2...gkmax

(∑
i

hi(gi)

)
P (g1, g2....gkmax)

=
∑
i

∑
g1,g2...gkmax

hi(gi)P (g1, g2....gkmax) (3)

where all the sums over the variables gi are over gi = 0, 1, and the sum over i is over all edges
in the metacommunity tree, i.e. all edges that could be in the sampled tree. In the third step
we are using that the expectation value 〈A+B〉 is equal to 〈A〉+ 〈B〉.
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For each edge i we have a contribution to the expectation value

E(PD)i =
∑

g1,g2...gkmax

hi(gi)P (g1, g2....gkmax), (4)

which we can rewrite as:

E(PD)i =
∑
gi

hi(gi)pi(gi) = Sipi(1) + 0 ∗ pi(0) = Sipi(1) (5)

where we have introduced the marginal probability that a given edge appears in the sampled
tree:

pi(gi) =
∑
{gj}
j 6=i

P (g1, g2....gkmax). (6)

Finally, this gives us:

E(PD) =
∑
i

E(PD)i =
∑
i

Sipi(1). (7)

For sampling schemes such that all edges with a given number of descendent tips, k have the
same marginal distribution pi(1) = P (k), we can rewrite this as

E(PD) =
∑
k

S(k)P (k). (8)

The function S(k) is the sum over all edges with k descendent tips, which we term the Edge-
length Taxa Distribution (ETD), or Edge-length Abundance Distribution (EAD) in the case of
tips corresponding to individuals rather than taxa.

Sampling Schemes

A binomial sampling scheme with probability q that a given tip appears in the sampled tree
leads to the marginal probability

Pbin(k) = 1− (1− q)k (9)

that an edge with k descendent tips appears in the sampled tree, which leads to the following
expression for expected phylogenetic diversity:

E(PD)binomial =
∑
k

S(k)(1− (1− q)k). (10)

The EAD therefore performs an analogous role to that of the Species Abundance Distribution
(SAD) in sampling theory based around species richness rather than phylogenetic diversity.
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Other common sampling schemes include Poisson sampling (random sampling with replacement)
and negative binomial:

Ppoiss(k) = 1− e−qk (11)

Pnb(k) = 1−
(

r

qk + r

)r
(12)

The parameter r represents the departure from random sampling, with positive r indicating
clustered sampling, negative r overdispersed sampling, while in the limit of r− >∞ the negative
binomial and poisson sampling are equivalent.

Variance in Sampled Phylogenetic Diversity

V ar(PD) =
∑

g1,g2...gkmax

(∑
i

h(gi)

)2

P (g1, g2....gkmax)− E(PD)2

=
∑

g1,g2...gkmax

∑
i

h2
i (gi) + 2

∑
i 6=j

hi(gi)hj(gj)

P (g1, g2....gkmax)− E(PD)2

=
∑
i

∑
gi

h2
i (gi)pi(gi) + 2

∑
i 6=j

∑
gi

∑
gj

hi(gi)hj(gj)pij(gi, gj)

−
∑
i

∑
gi

h2
i (gi)pi(gi)

2 − 2
∑
i 6=j

∑
gi

∑
gj

hi(gi)hj(gj)pi(gi)pj(gj)

=
∑
i

∑
gi

h2
i (gi)

(
pi(gi)− pi(gi)2

)
+
∑
i 6=j

∑
gi

∑
gj

hi(gi)hj(gj) (pij(gi, gj)− pi(gi)pj(gj))

(13)

where the joint probability pij is defined by:

pij(gi, gj) =
∑
{gk}
k 6=i,j

P (g1, g2....gkmax). (14)

Next, we note that for an edge i downstream from an edge j the hierarchical structure of a tree
fixes

pij(1, 1) = pi(1) (15)

and so

V ar(PD) =
∑
i

S2
i

(
pi(1)− pi(1)2

)
+
∑
i<j

SiSj (pi(1)− pi(1)pj(1)) (16)

where by i < j we mean that i is downstream of j, i.e. that there is a path from j to i moving
in the direction of a tip of the tree. Finally, we again assume that the sampling scheme is such
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that pi(1), the marginal probability that edge i appears in the sampled tree depends only on
the number of descendent tips downstream from i. Then:

V ar(PD) =
∑
k

T (k)
(
P (k)− P (k)2

)
+ 2

∑
l<k

U(k, l) (P (l)− P (k)P (l)) (17)

where T (k) is the sum of squared edge lengths over all edges with k descendent tips, and U(k, l)
is the product of edge lengths with k descendent tips and downstream edge lengths with l < k
tips.

For realistic trees, computing U(k, l) increases faster with tree-size than T (k) or S(k), by a
factor of approximately the number of tips. To make computing the variance more tractable,
we have used an approximation which serves as an upper bound on the variance:

V ar(PD) ≤ V arupper(PD) =
∑
k

[T (k) + 2V (k)]P (k) (1− P (k)) (18)

where V (k) is the sum over i of the product Si
∑

j Sj , where Si is any edge with k downstream
tips, and the sum over j is over all edges in the clade downstream of edge i. In other words, for
a given edge i, the sum over j gives the total branch length of the corresponding downstream
clade. We then use

1. V (k) =
∑

l U(k, l) where U(k, l) is defined as above as the product of edge lengths with k
descendent tips and downstream edge lengths with l < k tips.

2. For the probabilities P (k) that at least one tip is sampled from a clade with k tips, and P (l)
that any subclade of this clade with l < k tips has at least one tip sampled, P (k) ≥ P (l).

to obtain the inequality: ∑
l<k

U(k, l)P (l) ≤ V (k)P (k) (19)

and hence Eq. (18). Again, the sum over l here is for all subclades with l tips downstream of
an edge with k tips. Finally we note that V (k) is computationally much faster to obtain than
U(k, l).

Expected Phylogenetic Beta-Diversity The expected shared branch length of two randomly-drawn
subtrees can be formulated in a similar way, but depends on the probability P(g1, g2...., g′1, g

′
2....)of

two sets of variables, {gi} and {g′i} corresponding to the two trees:

E(Shared) =
∑

g1,g2...gkmax
g′
1,g

′
2...g

′
kmax

H(g1, g2...., g′1, g
′
2)P(g1, g2...., g′1, g

′
2....)

=
∑

g1,g2...gkmax
g′
1,g

′
2...g

′
kmax

(∑
i

hi(gi, g′i)

)
P1(g1, g2....)P2(g1, g2....)

(20)
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where we have used that the trees are drawn independently and so P(g1, g2...., g′1, g
′
2....) factorizes

into the probabilities defined in the previous sections, but where I have labeled these probabilities
P1 and P2 to allow for the fact that e.g. the two trees may be of different sizes. The function
hi(gi, g′i) is equal to Si if both gi and g′i are equal to one, i.e. if both trees contain edge i, and
is zero otherwise.

We can similarly express this in terms of marginal probabilities pαi(gi) that edge i is present in
tree α,where α corresponds to tree 1 or tree 2. Then:

E(Shared) =
∑
i

∑
gi

hi(gi, g′i)p1i(gi)p2i(g′i) =
∑
i

Sip1i(1)p2i(1). (21)

For sampling schemes such that all edges with a given number of descendent tips, k have the
same marginal distribution p1i(1) = P1(k), we can rewrite this as

E(Shared) =
∑
k

S(k)P1(k)P2(k). (22)

and under binomial sampling with probabilities q1 and q2 of each tip being sampled we have:

E(Shared)binomial =
∑
k

S(k)(1− (1− q1)k)(1− (1− q2)k). (23)

Phylogenetic Beta Diversity and the Impact of Differing Sample Sizes This impact of sample size
on studies of phylogenetic beta diversity points to a need to normalize measures of phylogenetic
similarity. Taking two real communities containing n1 and n2 individuals, we can compute
the expected shared and total branch length for two randomly sampled communities of the
equivalent sizes. This gives us a way to normalize both shared branch length and total branch
length separately, providing a new kind of baseline for phylogenetic diversity. Our approach is
to normalize Unifrac with respect to a pair of samples drawn according to a specifed sampling
scheme, and again we work with binomial sampling. Using this method, we cluster gut samples
in Figure 7 (using Ward’s criterion), and show that gut samples from the same subject, and in
particular samples taken on consecutive days, are significantly more likely to have a normalized
Unifrac score of less than 1—roughly speaking, only these consecutive samples from the same
subject are more similar than random.


