
1

Supplementary Information

1 Tensor voting fields

Consider a plane tensor with normal having unit magnitude (saliency) and aligned with Y -axis as shown
in Figure S1(a). Intuitively, this indicates a curve element (surface in 3D) with normal along Y -axis.
Now, consider the orientation and saliency of the curve to pass through any other point p. Using the
Gestalt principles of perception in human vision systems, continuity and proximity are essential in making
a determination [2]. For a given position p = (x, y) and at an angle θ, the vote V at p, is determined as:

V 2D(p) = exp
s2 + cκ2

σ2
NNT (1)

Here, s is the arc length and κ is the curvature of a smooth osculating circle passing through p. N is
the normal vector at p to the smoothest path between the two tensors and is given by [sin(2θ) cos(2θ)]T .
In Figure S1(b), the 2D plane voting field is shown. The heat map has a range of [0, 1] and the tensor
orientations are overlaid at discrete locations. Note that the plane field exist only at θ ≤ 45 and tensor
saliencies attenuate with increasing distance and curvature of the perceptual structure. A plane tensor
field V3D in 3D is obtained by rotating the 2D voting field obtained about the Y -axis which is the axis
of symmetry. Given Euler angle transformations (θ, φ, ψ) about X, Y and Z-axis respectively, we can
align the voting fields as:

V 3D
θφψ = RθφψS

3DRTθφψ (2)

Figure S1(c) shows a simple example in which voxels are drawn from two intersecting circles. Each
voxel is initialized as a plane token of unit saliency with e1 along the normal. The reconstruction shows
the extracted plane saliency map with correct normal orientations.

2 Software Usage

For the convenience of users, we have provided 32- and 64-bit precompiled binaries for Windows, Mac,
and Linux environments at https://wiki.med.harvard.edu/SysBio/Megason/ACME

Users can download the appropriate binaries, unzip, and follow the commands from Supplementary
Section 2.3 onwards. For advanced users, we list the commands to directly download source code, compile
and use our software for membrane processing. We assume that the computing environment is Linux
here but similar steps can be listed out easily for the Mac and Windows environments. The software
has been designed and tested in a cross-platform environment. We use CMake, a tool that generates
makefiles under Linux, the Visual Studio Solution files (.sln) under Windows, or the XCode project files
(.xcodeproj) under Mac OS X. It allows developers to build their projects across different platforms with
a minimum number of reconfiguration steps. We use GIT, a version control system used to manage our
source code. The GIT repository is located at https://github.com/krm15/ACME/

Our software uses the Insight Toolkit (ITK) library (www.itk.org). ITK is an open-source, cross-
platform system that provides developers with an extensive suite of software tools for image analysis.
In what follows, statements beginning with a $ symbol refer to commands to be executed in a terminal
window.

2.1 Downloading and compiling ITK

1. Download ITK to a directory called ITK-Source
$ mkdir ITK-Source

2

$ cd ITK-Source
$ git clone git://itk.org/ITK.git
$ cd ITK
2. Fetch any submodules in the ITK tree:
$ git submodule update –init
3. Create build directory for compiling ITK code. We refer to this directory as ITK-Binary.
$ mkdir ITK-Binary
$ cd ITK-Binary
4. Configure ITK. Turn on the variables ITK BUILD ALL MODULES, ITK USE REVIEW and set
CMAKE BUILD TYPE to Release.
$ ccmake <PathToITK-Source>/TK-Source
5. Build ITK
$ make

2.2 Downloading and compiling ACME software

6. Download software to a directory called MR-Source
$ mkdir MR-Source
$ cd MR-Source
$ git clone https://github.com/krm15/ACME.git
$ cd ACME
7. Create build directory for compiling the software. We refer to this directory as MR-Binary.
$ mkdir MR-Binary
$ cd MR-Binary
8. Configure the software build. It is important to set CMAKE BUILD TYPE to Release and enter the
path to the ITK build directory (ITK-Binary) from step 3.
$ ccmake <PathToMR-Source>/MR-Source
9. Build the software
$ make

2.3 Running the software on a 2D intersecting circle voting example

8. The source code for this simple test is located in
MR-Source/Examples/BallVotingIntersectingCirclesExample2D.cxx. There are 3 inputs to set in the com-
mand line. The voting radius sigma and the names of two output images showing the tokens and the
reconstructed circle. For simplicity, we use the flexible MHA image format that is capable of storing
multi-dimensional (2D/3D) data with any datatype (int/float/double/vector/tensor). To run the exam-
ple, we go to the binary directory to execute the command.
$ cd MR-Binary
$ bin/ballVotingIntersectingCirclesExample2D 1.0 Data/BallVotingExample/inputTokenImage.mha
Data/BallVotingExample/outputReconstructedImage.mha
The image inputTokenImage.mha is the set of automatically generated points from two intersecting circles.
The output image outputReconstructedImage.mha is a vector image with three components indicating
the presence of three structures. We have shown the stick component in Figure S1(b). Upon exploring
the other components, the reader can also observe the exact points where the circles intersect.

3

2.4 Running the code on somite data

Here, we start with the processing of a single timepoint of somite data. Our input raw data is avail-
abe for download as supplementary files (Dataset S1). (DatasetS1/PresomiticMesoderm/Somite0.mha).
We sequentially run four filters for preprocessing+resampling, planarity filtering, tensor voting, and
watershed segmentation to obtain a reconstructed membrane image shown in Figure S3. The code
for the planarity filter and tensor voting classes are located in MR-Source/Code/PlanarityFilter/ MR-
Source/Code/TensorVoting/ respectively. All the example code described below for running the filters
is located in the folder MR-Source/Code/Examples/. The compiled code for executing the commands
should be located in MR-Binary/bin. In Figure S2, we provide a flowchart of the processing steps, the
flow of information, and the corresponding intermediate outputs at each stage.

9. Preprocess the images to eliminate photon shot-noise during acquisition - This is a simple median fil-
ter with hole-filling. Source code for this step is located in MR-Source/Code/Examples/CellPreprocess.cxx.
There are three command-line parameters namely, the input image, the denoised output image, and the
average cross-sectional radius of a membrane in physical units approximately. The average radius in our
images was set to 0.3 µm.
$./cellPreprocess DatasetS1/PresomiticMesoderm/Somite0.mha
DatasetS1/PresomiticMesoderm/Somite0-preprocess.mha 0.3

10. Resample the images to make the voxel sampling isotropic - While this step is not required for
the normal operation of the reconstruction code, it is required for the optimal operation of the water-
shed segmentation algorithm. This is a simple linear interpolation that changes the image sampling from
0.2:0.2:1.0 to 0.4:0.4:0.5. Source code for this step is located in MR-Source/Code/Examples/Resample.cxx.
There are five command-line parameters namely, the input image, the resampled output image, and re-
sampling mutliplication factors.
$./resample DatasetS1/PresomiticMesoderm/Somite0-preprocess.mha
DatasetS1/PresomiticMesoderm/Somite0-preprocess.mha 2.0 2.0 0.5

11. Apply the planarity detection filter - The source code for this filter is located at
MR-Source/Code/Examples/MultiscalePlateMeasureImageFilter.cxx. The planarity filter expects four pa-
rameters - the preprocessing input image, the planarity filter output image, the eigen matrix image, and
the neighborhood size for locating planar structures in physical units. Please note that the eigen matrix
image stores a 3×3 matrix at each pixel and hence uses a relatively high amount of memory.
$./multiscalePlateMeasureImageFilter DatasetS1/PresomiticMesoderm/Somite0-preprocess.mha
DatasetS1/PresomiticMesoderm/Somite0-planarity.mha DatasetS1/PresomiticMesoderm/Somite0-eigen.mha
0.7

12. Apply the tensor voting filter to the output of the planarity filter - The source code for this fil-
ter is located at MR-Source/Code/Examples/MembraneVotingField3D.cxx. There are four command-line
inputs - the planarity filter output, the eigen matrix image, the tensor voting output, and the voting
neighborhood radius.
$./membraneVotingField3D DatasetS1/PresomiticMesoderm/Somite0-planarity.mha
DatasetS1/PresomiticMesoderm/Somite0-eigen.mha
DatasetS1/PresomiticMesoderm/Somite0-TV.mha 1.0

13. Use the watershed segmentation filter to obtain cell segmentations. Here, the input parameters
consist of the preprocessed input image (for computing image gradients), tensor voting image, and the
output segmentation image. We set a threshold value of 1.0 on the tensor voting data to differentiate
background and foreground.
$./membraneSegmentation DatasetS1/PresomiticMesoderm/Somite0-preprocess.mha

4

DatasetS1/PresomiticMesoderm/Somite0-TV.mha
DatasetS1/PresomiticMesoderm/Somite0-segment.mha 1.0

2.5 Important parameter settings

In our code, there is only a single parameter (σ,Ω) to set for each filter, namely the neighborhood radius.
This parameter is set in physical units and represents the radius within which to compute the planarity
function and perform the voting operation. In the above example, we chose to use a neighborhood
radius of 0.3 µm for preprocessing, σ = 0.7µm for planarity filtering, and Ω = 1.0µm for tensor voting
respectively.

3 Validation: Generating Synthetic Membrane Data

Synthetic 3D images are generated using the k-means algorithm [5] for generating centroidal Voronoi
tessellations of the image region. These images provided as Dataset S2. The sequence of steps for
generating similar such datasets are as follows:
(i) Select the number of cells (k = 1000) and randomly initialize their center positions within a volume
(Ω) sampled by a high resolution grid of dimensions 500× 500× 500 with pixel spacing of 0.2µm in x,y
and z.
(ii) Run the k-means algorithm until convergence when cell centers stop changing their positions. At
convergence, cells uniformly occupy the image region and roughly have equal volumes.
(iii) Compute a point cloud density function (M) representative of membrane markers at the Voronoi
boundaries of cells as:

M(p) = δ(|di(p)− dj(p)|) (3)

where δ is the Dirac-delta function impulse function and di,dj are the distances to the nearest pair of cell
centers.

(iv) The point spread function of the microscope is sumulated by convolving with a 3D Gaussian
kernel (Gσx,σy,σz

) as point spread function (σx = σy = σz/2 = 0.2µm), an image (I) is reconstructed on
a new grid of spacing 0.2µm, 0.2µm and 1.0µm in x,y and z respectively.
(v)The image is then corrupted with zero mean additive Gaussian (Nσ) and Poisson (Ps) noise distri-
butions. Note that the Poisson noise distribution is dependent on the underlying image intensity as its
mean. The s refers to the scaling of image intensities prior to generating noise which is the same as
inverse of the gain applied during acquisition. The resulting image can be obtained using the following
expression:

I(p) =

∫
Ω

Gp,Σ ∗Mdx+Nσ(p) + Ps(p) (4)

where Σ = diag(σx, σy, σz).
In the folder Scripts, we have supplied a bash script file SyntheticMembraneGenerationBashScript.sh.

Upon execution, this script creates two directories validation/manual and validation/raw. It then au-
tomatically runs a synthetic membrane image generator to generate a sequence of ten 3D images with
varying (σ, λ) values. Three images spanning the range from (0.01, 1.00) to (0.1, 0.1) are shown in
Figure S3. The folder validation/manual will contain the ground-truth segmentation images and valida-
tion/raw (Figure S3(a-c), for example) will contain simulated microscopy images. The idea is to apply our
segmentation pipeline (steps 9-12) and compare with the segmented data to create Table 1 automatically.

5

4 Materials and Methods

4.1 Ethics Statement

Zebrafish were raised in an American Association of Laboratory Animal Care accredited fish facility
following the guidelines outlined in the Guide for the Care and Use of Laboratory Animals, The Zebrafish
Book, and those of the Harvard Medical Area Standing Committee on Animals.

4.2 Image acquisition

Fluorescent labeling of zebrafish embryos was conducted by injecting 1-cell stage embryos with 2.3nl of
40ng/µl each H2B-EGFP and mem-mCherry mRNA and were screened for health and brightness before
imaging. For the somite data, embryos transgenic for nuclear localized tomato and membrane local-
ized citrine (Tg(actb2:Hsa.H2B-tdTomato)hm25; Tg(actb2:mem-citrine)hm26) were used. Embryos were
staged and mounted as described in [6,7]. Live imaging was performed using a Zeiss 710 confocal/2-photon
microscope with a home-made heating chamber and C-Apochromat 40X 1.2 NA objective. Chameleon
laser line 1020nm was used for 2-photon imaging and 488nm, 514nm, 561nm and 594nm for confocal.

References

1. Guy G, Medioni G (1996) Inferring global perceptual contours from local features. International
Journal of Computer Vision 20: 113-133.

2. Medioni G, Kang SB (2004) Emerging Topics in Computer Vision. Upper Saddle River, NJ, USA:
Prentice Hall PTR.

3. Loss L, Bebis G, Nicolescu M, Skurikhin A (2009) An iterative multi-scale tensor voting scheme for
perceptual grouping of natural shapes in cluttered backgrounds. Journal of Computer Vision and
Image Understanding (CVIU) 113: 126-149.

4. Parvin B, Yang Q, Han J, Chang H, Rydberg B, et al. (2007) Iterative voting for inference of
structural saliency and characteriztion of subcellular events. IEEE Transactions on Image Processing
16: 615-623.

5. Du Q, Faber V, Gunzburger M (1999) Centroidal voronoi tessellations: applications and algorithms.
SIAM Review 41: 637-676.

6. Megason SG, Fraser SE (2007) Imaging in systems biology. Cell 130: 784–795.

7. Megason SG (2009) In toto imaging of embryogenesis with confocal time-lapse microscopy. Methods
in Molecular Biology 546: 317–332.

