
1

Supplementary information
Noah S. Bieler1, Tuomas P. J. Knowles2, Daan Frenkel2, Robert Vácha2,3,∗
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1 Free Energy Landscape

The free energy landscape was constructed using the following assumptions:

• The entropy of formation of an oligomer can be distributed equally into all its building units, since
the entropy change compared to free monomer stems mainly from the loss of translational and
rotational entropy (note, that β-particles in an oligomer can rotate more due to the larger patch
size, without losing any enthalpy). This means the entropy change of an i-mer (i = u+ v) is

∆Sαuβv = u∆S1αu+v + v∆S1βu+v , (S1)

where ∆S1αi is the entropy change of one monomer in a pure α-i-mer.

• The oligomers are assumed to be in the minimum of interaction energy, where ∆Hαuβv can be
calculated by adding together all possible interactions (see Figure 6).

With the above assumptions the following procedure is used to construct the free energy landscape:

1. Calculate the free energy per monomer of pure α or β oligomers [1]:

∆G1i =
kT

i
ln

(
ixi1
xi

)
(S2)

2. Next the idealized enthalpic contribution is subtracted in order to obtain the entropic contribution

to the oligomer ∆Sαi and ∆Sβi and per each monomer ∆S1αi =
∆Sαi
i .

3. Using these terms an idealized entropic contribution for the oligomer is calculated using:

∆Sαuβv = u∆S1αu+v + v∆S1βu+v (S3)

4. Finally the idealized enthalpic contribution ∆Hαuβv as well as the chemical potential ∆µ for the
mixed oligomer is constructed from individual contributions:

∆Gαuβv = ∆Hαuβv + v∆µ− T∆Sαuβv (S4)

In order to test the the above assumptions further calculations were performed. In particular, we
evaluated entropic contributions to dimers, trimers, and tetramers and compared them with our simula-
tions.

The entropic contribution can be expressed in terms of the translational entropy of the monomer by
following these steps: First we look at the free energy change for the aggregation of a pure dimer:

∆rG12 = ∆rH12 − T∆rS12 = ∆H2 − 2∆H1 − T∆S2 + 2T∆S1 (S5)
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Here we apply the convention, that ∆rYi means the change of Y in the reaction from an monomer to an
i-mer and ∆Y1i is the contribution of one monomer in a i-mer to the value of Y , so that ∆rY1i = i∆Y1i.
Meanwhile ∆Yi is the contribution of i-mer to the value of Y .

Since ∆H1 = 0 and the entropy of the monomer is only constituted by the translational and rotational
entropy, while the dimer has also some internal entropy, we can write:

∆rG12 = ∆H2 − T∆Srot2 (V ) − T∆Str2 (V ) − T∆Sint2 (V ) + 2T∆Str1 + 2T∆Srot1 (S6)

If we assume, that ∆Str2 (V ) ∼ ∆Str1 (V ), we can rewrite the entropy loss ∆rS12 as:

∆rS12 = −∆Str1 (V ) + ∆Srest, (S7)

where we put the rest (the change in the rotational entropy and the internal entropy) into ∆Srest.
Applying the same steps for the free energy difference between three monomers and a trimer, we obtain:

∆rS13 = −2∆Str1 (V ) + ∆Srest. (S8)

If we approximate ∆Srest ≈ 0, we obtain ∆rS13(V ) ≈ 2∆rS12(V ) or ∆S13 ≈ 4
3∆S12 for the entropy loss

per monomer in a trimer and ∆S14 ≈ 3
2∆S12 for a monomer in a tetramer.

The only thing, which changes at different concentrations is the translational entropy, ∆∆SV1,V2 ,
which can be calculated from the ideal gas approximation employing the equation of Sackur-Tetrode [2]:

S(V ) = Nk ln

[(
2πmkT

h2

)3/2
V e5/2

N

]
+ Selec, (S9)

where N is the number of particles, m the mass, h Planck’s constant and Selec the electronic contribution
to the entropy. Then, the entropy change between two different volumes is:

∆∆SV1,V2

theo = ∆S(V2) − ∆S(V1) = ln

(
V2

V1

)
= 3 ln

(
l2
l1

)
(S10)

In the case, that the box length li is simply doubled, the entropy change is ∆∆Stheo = 3 ln(2) ≈ 2.1.
For the aggregation of monomer to a dimer or trimer we obtained follwing entropy changes per

monomer:

∆∆SV1,V2

12 ≈ −1

2

(
∆Str1 (V2) − ∆Str1 (V1)

)
= −3

2
ln

(
l2
l1

)
(S11)

∆∆SV1,V2

13 ≈ −1

3

(
2∆Str1 (V2) − 2∆Str1 (V1)

)
= −2 ln

(
l2
l1

)
(S12)

where subindex denotes the size of oligomer to which we are comparing (2 - dimer, 3 - trimer). In table
S2 the above approximated values are compared to the simulations results and agreement is very good.
Note: ∆∆SV1,V2

12 = −(1/2)∆∆Stheo, ∆∆SV1,V2

13 = −(2/3)∆∆Stheo and ∆∆SV1,V2

14 = −(3/4)∆∆Stheo.
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Table S1. The free energy differences and the entropy loss between monomer and di-, tri- or
tetrameric oligomer determined from simulations of fixed monemeric state (α and β). The values are
per particle and units are in kT.

c/mM ∆G
(α)
12 ∆G

(α)
13 ∆G

(α)
14 ∆G

(β)
12 ∆G

(β)
13 ∆G

(β)
14

8.00 -0.30 -0.19 0.31 -1.26 -2.37 -2.91
2.37 0.53 0.99 1.60 -0.38 -1.13 -1.46
1.00 1.01 1.65 2.32 0.10 -0.47 -0.71
0.51 1.36 2.12 2.88 0.46 0.01 -0.16
0.30 1.65 2.50 3.24 0.74 0.39 0.26
0.19 1.88 2.81 3.45 0.98 0.70 0.62

c/mM T∆S
(α)
12 T∆S

(α)
13 T∆S

(α)
14 T∆S

(β)
12 T∆S

(β)
13 T∆S

(β)
14

8.00 -3.90 -8.21 -10.81 -2.94 -6.03 -7.59
2.37 -4.73 -9.39 -12.10 -3.82 -7.27 -9.04
1.00 -5.21 -10.05 -12.82 -4.30 -7.93 -9.79
0.51 -5.56 -10.52 -13.38 -4.66 -8.41 -10.34
0.30 -5.85 -10.90 -13.74 -4.94 -8.79 -10.76
0.19 -6.08 -11.21 -13.95 -5.18 -9.10 -11.12

Table S2. The differences between the entropy loss from one concentration to an other. In the very
right column the theoretical values according to equation (S10) for ∆∆Stheo = 3 ln (l2/l1) are listed.

The superscript (α) and (β) denote the state of the PSCs. Note: ∆∆SV1,V2

12 = −(1/2)∆∆Stheo,

∆∆SV1,V2

13 = −(2/3)∆∆Stheo and ∆∆SV1,V2

14 = −(3/4)∆∆Stheo.

c/mM ∆∆S
(α)
12 ∆∆S

(α)
13 ∆∆S

(α)
14 ∆∆S

(β)
12 ∆∆S

(β)
13 ∆∆S

(β)
14 −∆∆Stheo

8.00 - 2.37 -0.8 -1.2 -1.3 -0.9 -1.2 -1.4 -1.2
2.37 - 1.00 -0.5 -0.7 -0.7 -0.5 -0.7 -0.8 -0.9
1.00 - 0.51 -0.4 -0.5 -0.6 -0.4 -0.5 -0.5 -0.7
0.51 - 0.30 -0.3 -0.4 -0.4 -0.3 -0.4 -0.4 -0.5
0.30 - 0.19 -0.2 -0.3 -0.2 -0.2 -0.3 -0.4 -0.5
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2 Residual Monomer Concentration

As can be seen in Figure 4. not all monomers are depleted from the bulk, though the growth function
(Eq. 1) implies a total conversion of free monomers to fibrils. This originates from derivation, where the
dissociation rate k−, i.e. the rate of monomers dissociating from the fibrils, is approximated by zero.

To verify this assumption we have calculated the concentration of monomers at the end of our simu-
lations, which is linked to the equilibrium constant k−/k+:

m(teq)/mp = c(teq) =
k−
k+

, (S13)

where m(teq) is the monomer mass concentration, c(teq) is the equilibrium monomer concentration, and
mp is molar mass of monomer peptide. k+ is the monomer association rate, i.e. rate constant for the
binding of a monomer to a fibril. The monomer concentrations for simulations which reached equilibrium
are listed in Table S3. All the values are in the same very low order of magnitude, which confirms the
validity of the low depolymerization rate approximation and justifies the use of Eq. 1.

Table S3. The equilibrium monomer concentration for the simulations with different box sizes.

c0/mM Number of monomers c(teq)/µM
8.00 0.5 6.5
2.37 4.9 19.2
1.00 6.9 11.4
0.51 18.5 15.7
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