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Interfacial curvature and the vertex model. Here we flesh out the argu-
ment leading to Eq. (1) of the main text and its relation to Fig (2). Specifically,
we show how a polygonal vertex model can correctly represent the effect of
interfacial curvature caused by differential intracellular pressure.

Let us focus in on a cell-cell interface with tension Tab in a hexagonal lattice,
as in Fig. (2). The forces on a vertex due to the tension Tab can be resolved
into components tangential and normal to the ab-chord. If the interface has
curvature κab that spans angle θ ≈ κab`ab over the length `ab of the interface,
then the force components are

~F =

(
Fx
Fy

)
=

(
Tab cos(θ/2)
Tab sin(θ/2)

)
. (S1)

If the system is in a mechanical equilibrium, the surface tension balances
the difference in hydrostatic pressure on the two sides, in accordance with the
Young-Laplace equation ∆P = Pa − Pb = Tabκab. Substituting this into the
y-component of the force-balance equation and taking the limit of small θ,

~F =

(
Tab cos(θ/2)

κ−1
ab ∆P sin(θ/2)

)
≈
(

Tab
κ−1
ab ∆P θ/2

)

≈
(

Tab
∆P `ab/2

) (S2)

where `ab is the length of the cord which defines cell edge in the vertex model
and (for small curvatures) well approximates the original curved surface. This
leads to Eq (1) where Fx component is identified with the force along ~rij - the
direction of the “chord” connecting vertices i and j - and Fy is the force compo-

nent perpendicular to the chord, i.e. in the direction rβijεβα. up to a coordinate
rotation.

Computational implementation of the Mechanical Inverse. Segmen-
tation, construction of the matrix M , and inversion were all performed using
custom-written Matlab programs. These programs are available upon request.
Segmentation and labeling of cells is performed by the standard watershed al-
gorithm implemented in Matlab Image Processing Toolbox. Vertex positions
are obtained by identifying points of the skeletonized image that neighbor three
cells.

Using cell neighbor information from the segmented image, the matrix M of
Eq. (8) is constructed from Eq. (1), which represents the force on a vertex due
to pressures and tensions of the neighboring cells and cell interfaces. Suppose
a hypothetical cell array, obtained through image segmentation, contains v ver-
tices, c cells, and e edges (cell-cell interfaces). Then there exist 2v equations
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describing the vertex forces: one for each spatial dimension of each vertex. The
net force vector acting on vertex i at position ~ri is given in terms of neighboring
vertex position vectors ~rj , pressures from the neighboring cells Pa and Pb, and
the interfacial line tensions Tab, by Eqns. (1) and (4) of the main text. The zero
net force conditions correspond to the first 2v mechanical constraint equations.

Since all the constraints are linear in the stress parameters (T and P ), de-
termination of tensions and pressures reduces to solving a linear system of equa-
tions. However, there are two degrees of freedom that should be fixed to make
the problem solvable. Since the pressure contributions only show up as differ-
ences, an overall additive pressure constant can be set. Additionally, due to
the assumption of mechanical equilibrium, an overall scale must also be set.
Generally we either set the exterior domain pressure is zero (closed cell arrays),
or set the average pressure is zero (open cell arrays). The overall scale is set
by constraining the average tension. These appear as two extra equations. For
example, in the case of setting the average pressure and average tension, the
equations would be of the form

c∑
a=1

Pa = 0∑
〈ab〉

Tab = e
(S3)

where a and b are cell indices, c is the total number of cells, and 〈ab〉 denotes the
set of neighboring cell interfaces. Any additional constraints are incorporated
via additional equations.

Once all mechanical, scaling, and additional constraints are imposed, the
system is cast in the form of Eq. (8). It is then solved in the least-squares sense
by way of Moore-Penrose pseudoinverse [1], which we did using the Matlab
“pinv” function.

Mechanical Inversion occasionally leads to a small number of (slightly) neg-
ative tensions, as was the case in the application of the method to cochlear neu-
rogenesis. Negative tension would correspond to an interface under compressive
load. Present understanding of mechanical organization of the cytoskeletal cor-
tex in terms of actomyosin filaments anchored to the interface by cadherin and
other cell adhesion molecules, suggests that it can bear tensile but not compres-
sive loads. (This interpretation is further supported by the fact that inferred
tension is almost always positive!) We therefore modified our mechanical model
by explicitly adding the constraint of positivity of tension, which adds a Tab > 0
inequality for each edge of the cell array, complementing the system of mechan-
ical constraint equations in Eq. (8). When mechanical constraint system is
solved in the least squares sense by minimizing the quadratic form in Eq. (14),
addition of a set of linear inequalities imposing tension positivity, turns it into
a “quadratic programming” problem for ψ (as defined in Eq. (7)):

min
ψ

{
1

2
||Mψ − C||2

}
Ti ≥ 0,∀i ∈ [1, . . . , e]

(S4)

which can be solved by standard quadratic programming algorithms [2]. The
latter was implemented by using the Matlab routine “lsqlin” in place of “pinv”.
As shown in Fig. S1, imposing tension positivity via quadratic programming
yields tensions very similar to the regular pseudo-inverse solution. This out-
come confirms our expectation that the observed geometry of the cell array is
consistent with tension/pressure model in Eq. (3).
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Relating interfacial traction and cortical tension. The interfacial tension
Tab may be decomposed into the tension θa(x) carried by the cortex on the
a-cell side of the interface and tension θb(x) carried by the cortex on the b-cell
side. The two cortical components have to add up to the same total tension at
each point x along the interface Tab = θa(x) + θb(x), but individual θa(x) and
θb(x) can vary with x which means that tension is transferred from one side
to the other. This transfer of tension is made possible by the shear stress, or
equivalently, the traction force, acting at the interface of the two cells: τab(x) =
∂xθa(x) = −∂xθb(x). The average traction acting along the interface is

τab =
1

`ab

∫ `ab

0

dx τab(x) =
θa(`ab)− θa(0)

`ab
=
θb(0)− θb(`ab)

`ab
(S5)

We shall now relate this average traction to the tensions carried by the neigh-
boring interfaces as illustrated by Fig. 9 of the main text. Observe that since
cortical tension is continuous at cell vertex junctions, then we have system of
equations

Tab = θa(`ab) + θb(`ab)
Tbc = θc(`ab) + θb(`ab)
Tca = θa(`ab) + θc(`ab)

(S6)

(at vertex abc) and similarly

Tab = θa(0) + θb(0)
Tbd = θd(0) + θb(0)
Tda = θa(0) + θd(0)

(S7)

(at vertex abd). These equations can be rewritten in terms of θa resulting in

2θa(`ab) = Tab − θb(`ab) + Tca − θc(`ab) = Tab + Tca − Tbc
2θa(0) = Tab − θb(0) + Tda − θd(0) = Tab + Tda − Tbd.

(S8)

from which it follows that

τab`ab = θa(`ab)− θa(0) =
1

2
(Tca − Tda + Tbd − Tbc) (S9)

leading to Eqn. (16) of the main text for the traction force acting between cells
a and b.

Inferred tension anisotropy at the outset of Drosophila gastrula-
tion. The pressure-constrained mechanical inverse was performed on live im-
ages of Drosophila ventral furrow formation from the Wiechaus lab [3]. The
tensions Tab were classified as anterior-posterior (AP) and dorsal-ventral (DV)
depending on the angle 0 < |φab| < π/2 the interface makes in relation to the
anterior-posterior axis of the embryo. Tensions with |φab| < π/4 were classified
as AP, and |φab| > π/4 - DV. The two-sample Kolmogorov-Smirnov (KS) test
was used to compare the inferred AP and DV tensions at two time points, four
and two minutes prior to invagination of the ventral furrow.

Figure S2 shows the cumulative distribution functions F (Tab) of tensions at
each of the two time points for AP and DV tensions. Comparisons of DV and
AP tension distributions at the earlier time frame give a KS test statistic with
p-value of 0.99, which supports the null hypothesis that the AP and DV tensions
are drawn from the same underlying distribution. Comparisons made between
the DV and AP tensions at the later time point give a KS test statistic with
p-value of 0.007, which supports the alternative hypothesis that the tensions
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are drawn from different underlying distributions. In particular, the our result
sueggests that tensions in the AP direction are on average 15% higher than
the DV direction, but with both AP and DV directions exhibit comparable and
large coefficients of variation (≈ 0.33 for both distributions).

Counting for cell arrays that include higher order vertices. Note that
for n ≥ 4, an n-fold coordinated vertex can be thought of as a coalescence of
(n − 2) neighboring three-fold vertices into a single vertex. Each coalescence
results in a graph with (n−3) fewer vertices and edges. The lowest order exam-
ple of this process can be seen in Fig. S3. Using this intuition, we formulate a
counting scheme that closely follows the case analyzed in the main manuscript.

Consider a two-dimensional cell array (and therefore planar graph) g where
there exist {vn : n ∈ N, n ≥ 3} vertices that are n-fold coordinated. Let v and
e be the total number of vertices and edges in this cell array. Now allow us
to define some new non-unique “effective” graph g′, where g′ has the following
properties: all the vertices in this graph are three-fold coordinated, and by
collapsing some subset of these vertices together, we recover the original cell
array g. Then if veff and eeff are the number of vertices and edges respectively
in this graph g′, they satisfy the relation

3veff = 2beff (S10)

as before. These quantities are then related to v and e in the original graph g
by

v = veff −
N∑
n=4

(n− 3)vn

e = eeff −
N∑
n=4

(n− 3)vn.

(S11)

Putting this together with Eq. (S10), we see that

3v = 2b−

(
N∑
n=4

(n− 3)vn

)
(S12)

is the relation for cell array g. Applying the Euler theorem to the graph g, we
see that for a closed array the relation between vertices, edges, and cells is

2v − e− c = −1−
N∑
n=4

(n− 3)vn. (S13)

The calculation is similar for the open cell array. Equation (S13) dictates that
each n-fold vertex adds (n − 3) degrees of freedom to the Mechanical Inverse.
These degrees of freedom come about in a way similar to boundary cells in
the open array. Boundary cells can be thought of as cells where edges and
vertices are also subtracted off from some “effective” closed array. As a result,
stability of the partial inverse is preserved as long as the number of new degrees
of freedom remain small in comparison to the number of additional constraints
imposed.
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