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Supporting Information

1 Comparison to MID estimator

One reasonable concern is that our results might reflect limitations of the linear Gaussian encoding model
rather than the virtues of the ALD prior. That is, the evidence optimization framework relies on a linear
Gaussian model of the neural response (Fig. 1), which fails to take into account neural response nonlinear-
ities or the discrete noise distribution underlying spike counts; perhaps the maximum likelihood estimator
under a more realistic encoding model would perform better than any of the estimators considered here,
making ALD unnecessary.

To address this possibility concretely, we compared the performance of ALDsf to the MID (maximally
informative dimensions) estimator [1], which is equivalent to the maximum likelihood estimator under the
linear-nonlinear Poisson cascade model [2, 3]. This estimator takes the neural nonlinearity into account,
and models the response noise as Poisson, which is clearly more accurate than Gaussian. We fitted the
MID estimate using a spline with 6 knots to parametrize the distributions P (x) and P (x|spike), which are
the necessary ingredients for computing the “single-spike information” (or equivalently, log-likelihood).

We fit MID, ALD, and Gaussian ML estimates to the data of the same V1 cell shown in (Fig. 6 left) for
100 different resamplings of the original data, for each size dataset. We used the MID estimate computed
on 25 minutes of independent data as our “test” filter estimate, and computed the mean squared error
between each “training estimate” and this test filter (If anything, this comparison should favor MID,
since the comparison filter was computed using the same model).

Figure S1 shows that MID error rate was comparable to the Gaussian-ML estimate (i.e., linear regression),
and that ALDsf achieved significantly lower error. This demonstrates that benefits conferred by the ALD
prior are not compromised by the assumption of a linear Gaussian response model. In fact, the MID
estimate performed slightly worse than the linear regression estimate, perhaps due to the fact that it
effectively has more free parameters (including those governing the nonlinearity) and therefore has even
greater need of regularization.

2 Essential quantities

Here we provide expressions for many of the quantities required for computing the log-evidence E , which
are useful for numerical optimization of the ALD model parameters. Although these expressions are all
available in the published literature [4–6], it is useful to have them compiled in one place, using the same
notation.

More importantly, we provide expressions for evaluating the evidence and posterior mean that avoid
inverting the prior covariance C or the posterior covariance Λ. This is important for cases where the
prior becomes ill-conditioned due to pixels or frequencies are effectively pruned from the model. We use
the \ (“backslash” operator in matlab) to indicate left-division, which is a faster and more numerically
stable way to left-multiply by the inverse of a matrix. (Note that the matrices to which we apply the
backslash operator here are always well-conditioned).



2

Likelihood. from linear-Gaussian encoding model:

P (Y |X,k, σ2) =
1

|2πσ2I| 12
exp

[
−1

2
(k−m)>L−1(k−m)

]
= |L| 12σ−nN (m,L) (1)

where

L = σ2(XTX)−1 and m =
1

σ2
LX>Y = (XTX)−1X>Y. (2)

Note L−1 = XTX
σ2 .

Prior. Zero mean Gaussian with covariance C:

P (k|θ) = N (0, C(θ)). (3)

Posterior. Gaussian, proportional to product of likelihood and prior:

P (k|X,Y, θ, σ2) = N (µ,Λ) (4)

where

Λ = (L−1 + C−1)−1 (5)

= ( 1
σ2CX
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−1C (6)

=
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)
\C, (7)

and

µ = ΛL−1m = 1
σ2 ΛX>Y (8)

= (XTX + σ2C−1)−1X>Y (9)

=
[
(CXTX + σ2Id) \C

]
X>Y, (10)

where Id is a (d× d) identity matrix and d is the parameter dimensionality of k.

Evidence:

P (Y |X, θ, σ2) =

∫
P (Y |X,k, σ2)P (k|θ)dk

=
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where In is a (n× n) identity matrix and n is the number of data points.

Log-Evidence:

Define E = logP (Y |X, θ, σ2) and we have

E = −n2 log |2πσ2| − 1
2 log |CΛ−1|+ 1

2µ
TΛ−1µ− 1

2σ2Y
>Y. (12)

Special case: what happens when C goes to all-zeros (or equivalently, all coefficients are pruned)? If
C = 0, then C−1 =∞. So Λ = 0. In this case, the log-evidence reduces to:

E = −n2 log |2πσ2| − 1
2σ2Y

>Y. (13)
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Figure S1. Comparison of MID and ALDsf estimates.
Left: RF estimates from MID, ML (linear Gaussian model), and ALDsf, using one minute of data from
a V1 simple cell (data from [7]). Right: Mean squared error between MID, ML and ALDsf estimates
and an MID estimate computed on an independent 25m test set, as a function of the amount of training
data. Each point represents an average of 100 training datasets randomly sub-sampled from the original
data.


