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Ordinary differential equations used to translate Figure 1 into mathematical formalism.  For each equation we give a description of the reactions that contribute to the right-hand side. Each reaction is characterized by a number, which can be used to identify the reactions in Figure 1. The names of the different chemical species can also be traced in Figure 1. We assumed mass-action kinetics for all reactions, see main-text for further details on derivation of all equations.  The total amounts of Eps8 (Et), Abi1-2 (At), Irsp53 (It), VASP (Vt), Barbed Ends (Nt) and Capping Protein (CPt) are assumed to be constant. We verified through parameter search that the system is monostable.

Table 2 - Parameters used in the model
	Reaction Rates

	Reaction Name
	Forward Rate ((M-1 sec-1)
	Reverse Rate

(sec-1)
	Reference

	(1) Actin polymerization
	konNGA=11.6
	koffN=1.3
	[1]

	(2) Abi Eps8 Binding
	konEA=1
	koffEA=3
	


[2] ADDIN EN.CITE 


	(3) IRSp53 Eps8 Binding
	konEI=1
	koffEI=0.01
	


[3] ADDIN EN.CITE 

	(4) IRSp53 VASP binding
	konVI=1
	koffVI=0.01
	This paper (Fig. 2B)

	(5) Capping of Abi:Eps8
	konNEA=210
	koffNEA=0.08
	


[2] ADDIN EN.CITE 

	(6) Capping of CP
	konNCP=6.3
	koffNCP=0.0005
	[4]

	(7) Formation of VASP:Irsp53:Fa Initiation Complex
	konVIFa=100
	koffVIFa=0.4
	This paper (estimated from Fig. 2a and S1a-b) 

	(8) Formation of Eps8:Irsp53:Fa Initiation Complex
	konEIFa=1
	koffEIFa=0.4
	


[2,5] ADDIN EN.CITE 

	(9) F-Actin Turnover
	
	kTURN=0.01
	This paper (fitting)

	Total Concentration of species

	Species 
	Concentration in WT HeLa ((M)

Concentration in WT Neuron ((M)
Concentration in WT MVD7 ((M)
	Reference

	Eps8 (Et)
	0.83

0.83

3.6
	


[2] ADDIN EN.CITE 



[6] ADDIN EN.CITE 
This paper (Fig. S2)

	Barbed Ends (Nt)
	0.2

0.2

0.2
	This paper (fitting)

	IRSp53 (It)
	12.6

1.2

13
	This paper (Fig. S2, overexpression as x10)

This paper (Fig. S2)

This paper (Fig. S2, overexpression as x10)

	VASP (Vt)
	0.86

3.5

0
	This paper (Fig.S2)

 


[7,8,9] ADDIN EN.CITE 
[10]

	Abi-1/2 (Abt)
	2

10

0.56
	


[2] ADDIN EN.CITE 
This paper (Fig. S2)

This paper (Fig. S2)

	G-Actin (Ga)
	10

10

10
	[11]
[11]


[11]

	Capping Protein (Cpt)
	0.3

0.3
0.3
	This paper (fitting) 


Upper: we assume that the kinetics parameters governing the reaction rates are shared between WT HeLa, WT Neurons and WT MVD7 cells. The numbers that characterize the reactions are also shown in the network of Figure 1. The references cited provide an estimate for the dissociation constant of the reactions. Lower: The concentrations of the different species is the same or differ in the two cells types depending on the species, as reported in the Table and in the main text. Protein concentrations were either obtained from the literature, measured directly (see also Fig. S2) or obtained by parameter fitting. Notice that IRSp53 is overexpressed in HeLa and MVD7, and thus its value is increased compared to Neurons. Moreover, in neurons VASPt includes all VASP-family proteins and Abi-1/2t includes Abi2 as well, both very scarce in HeLa. As for the total concentration of F-actin in a cell, it was reported that the concentration of G-actin is roughly 3 times less than polymerized actin (F-Actin) [12]. However, only a minor fraction contributes to the formation of filopodia, while a large amount is found in structures, such as actomyosin filaments or stress fibers, not accessible to bundling proteins.  Thus, we kept the F-actin concentration as an unconstrained variable, which was set after fitting to 2 µM.

Table 3 - List of phenotypes reproduced. 
	Cell Type
	Phenotype
	Change in the Model
	Reference

	HeLa
	Eps8 Kd
	Et=0.083
	


[3] ADDIN EN.CITE 

	
	VASP Kd
	Vt=0.083
	


[3] ADDIN EN.CITE 

	
	VASP&Eps8 Kd
	Et=Vt=0.083
	


[3] ADDIN EN.CITE 

	
	Abi Kd
	Abt=0.2
	


[3] ADDIN EN.CITE 

	
	CP Kd
	CPt=0.03
	This paper 

	Neurons
	Eps8 Ko
	Et=0
	


[6] ADDIN EN.CITE 

	
	VASP Kd& Eps8 Ko
	Et=0, Vt=0.35
	


[6] ADDIN EN.CITE 

	MVD7
	CP Kd
	CPt=0.03
	This paper


The different phenotypes have been simulated using the wild type parameters, shown in Table S2, except for those reported here. We assume that a K.d. reduces the concentration of the protein to 10%, and K.O. reduces it to 0%. The experimental values for the relative filopodia index reported in Fig. 4A, 5B and S3B can be found in the references reported in the table.
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