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The structure of this appendix is as follows. In Section A we introduce the
terminology and structure that specifies the types of models we analyze. In Sec-
tion B we review some facts about continuous-time Markov chains, including the
Feynman-Kac formula. Then, in Section C, we present an example with simplified
promoter and enhancer chains to illustrate both how we combine these components
to construct the two models of transcription regulation and how we may apply the
Feynman-Kac formula naively to compute the Laplace transform and moments of
the transcription time. Finally, in Sections D and E, we describe the decomposi-
tion and approximation methods that allow us to analyze larger and more detailed
models.

Appendix A. Overview of Model Formulation

As described in the main text, we use continuous-time Markov chains to model
the process of polymerase-initiation complex (PIC) assembly. In our formulation,
each state of the Markov chain corresponds to a configuration of the PIC (that is, a
possible intermediary form of the complex). Once the collection of states has been
determined and conveniently labeled, it only remains to specify which transitions
between states are possible and to assign rates to those transitions. One may think
of the states of the Markov chain as the set of vertices of a directed graph and
the possible transitions as the directed edges (that is, arrows) connecting pairs
of vertices in the graph. Every directed edge has an associated transition rate
that does not change as time progresses. Therefore, if the label of the (random)
intermediary form present at time t is Xt, then the stochastic process X = (Xt)t≥0
is a time-homogeneous Markov process.

There is a distinguished state, denoted s, that corresponds to empty DNA, and
another distinguished state, denoted f , that corresponds to successful transcription.
The random time the chain takes to reach the final state f is the first passage time to
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f . If the chain starts in the empty state s, then this corresponds to the transcription
time – the delay between induction and expression. For the purposes of deriving the
probability distribution of the transcription time, it will also be useful to consider
the probability distribution of other first passage times as well.

Properties of the transcription time have natural interpretations. For instance,
consider a population of duplicate systems (cells) that are induced simultaneously.
The mean (that is, expected) transcription time corresponds to the average delay
between induction and expression for the population. The variance of the tran-
scription time quantifies the variability between cells due to stochastic effects acting
independently on each individual and so it indicates the degree of asynchrony in the
first expression event. Similarly, if the Markov chain returns to state s each time
it reaches state f , then attributes such as the mean and variance of the probability
distribution of the total number of visits to state f during a finite window of time
correspond to features of the collection of numbers of mRNA molecules made by
members of the population during that time period.

It was our goal in the paper to compare the properties of two Markov chain
models of transcription that differed only by a “topological” rearrangement in the
sense that there was a correspondence between the directed edges in the two chains
such that for corresponding edges the associated transition rates are equal. More
specifically, we first constructed separate promoter and enhancer chains that were
common to the two models and then combined them in two different ways to pro-
duce the chains that modeled transcription. Roughly speaking, the promoter and
enhancer chains interacted by requiring that the enhancer chain be in its permis-
sive state for the promoter to pass a certain regulated transition and then varying
the identity of the regulated transition resulted in the two transcription regulation
models.

An analytic expression for the the Laplace transform of the probability distribu-
tion of the transcription time may, in principle, be obtained from the Feynman-Kac
formula, as described in Section B. However, a naive application of this approach,
with its attendant symbolic matrix inversion, quickly becomes infeasible for realis-
tic examples with even a moderate number of states. Luckily, it is often possible to
take advantage of the special structure of the transcription chains to obtain a sym-
bolic expression for the Laplace transform and hence for the moments, or at least
to provide formulas that give good approximations upon substitution of numerical
values for the transition rates. In Section D, we describe a general method for
computing Laplace transforms of first passage times that relies on simplifications
induced by a decomposition of the state space according to the subset of states
that must be passed through by any path of positive probability leading from the
initial to the final state – we call such states pinch points. The models of initiation
regulation we consider are amenable to this approach. Unfortunately, our models of
elongation regulation do not have pinch points, and a similar decomposition is not
feasible. A similar decomposition described in Section E for chains in “parallel” is
possible using spectral theory; however, it computational savings are not as great
as in the case of pinch points, so we also describe a simple approximation for this
case.

Our approach has several advantages. Firstly, once we have derived symbolic
expressions for features of interest, it is straightforward to substitute in a large
number of possibilities for the transition rate vector in order to understand how
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those features vary with respect to the values of the transition rates. This would
be computationally impossible using simulation and at best very expensive using
a numerical version of the naive Feynman-Kac formula. Secondly, the symbolic
expressions can be differentiated with respect to the transition rate parameters to
indicate sensitivity with respect to the values of the parameters. It would be even
more infeasible to use simulation or a numerical Feynman-Kac approach to perform
such a sensitivity analysis.

Appendix B. Computing first-passage times of continuous-time
Markov chains

The dynamics of a time-homogeneous, continuous-time Markov chain X are fully
specified by giving the state in which the chain starts and listing for each pair of
distinct states i 6= j the rate qij at which the chain makes a transition from i to j
(if a transition from i to j is not possible, then qij = 0). The random time it takes
the stochastic process X to leave state i has an exponential distribution with rate
ri, where ri =

∑
j qij . Upon leaving state i, the probability the process jumps to

state j is qij/ri.
The quantities qij and ri are collected into the generator matrix Q with elements

given by Qij = qij for i 6= j and Qii = −ri. The probability that the chain, X, is
in state j at time t, given that it started in state i at time 0, is then

P{Xt = j |X0 = i} = (etQ)ij =

∞∑
k=0

tk(Qk)ij
k!

.

Suppose in the representation of the Markov chain as a directed graph with
arrows between states corresponding to possible transitions that if it is possible to
follow a series of arrows from the state s to some state i, then it is possible to follow
another series of arrows from the state i to the state f . Suppose, moreover, that
there is at least one series of arrows leading from the state s to the state f . In this
case, if the chain starts in state s, then with probability 1 it will eventually visit
the state f .

Let τ denote the time that X first visits the state f . The Laplace transform of
the random variable τ when the starting state of the chain is s, is defined as

E[e−λτ |X0 = s] =

∫ ∞
0

e−λtP{τ ∈ dt |X0 = s},

where λ is the transform variable.
The Laplace transform and hence, in principle, the probability distribution of τ

may be computed using the modified transition matrix,

Q̃ij =

{
Qij , if i 6= f,

0, if i = f.

This is the generator matrix for the stopped Markov chain X̃, defined as X̃t =

Xmin(t,τ). That is, X̃ follows X up until it encounters state f , at which time it

stops. Because X̃ stops when it hits state f ,

P{τ ≤ t |X0 = s} = P{X̃t = f |X0 = s}.
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Integration by parts gives

E[e−λτ |X0 = s] = P{τ ≤ t |X0 = s}e−λt|∞0 + λ

∫ ∞
0

P{τ ≤ t |X0 = s}e−λtdt

= λ

∫ ∞
0

P{τ ≤ t |X0 = s}e−λtdt

=

∫ ∞
0

λe−λtP{X̃t = f |X0 = s}dt

=

∫ ∞
0

λe−λt(etQ̃)s,fdt

= λ[(λ− Q̃)−1]s,f .

The matrix (λ− Q̃) is invertible for λ > 0; this is equation (1) in the text.
The submatrix Q−f obtained by removing both the row and column indexed by

f from Q (or, equivalently, Q̃) is invertible and, as we observe below in Lemma D.9
below, the nth moment of τ is given analytically by

(B.1) E[τn |X0 = s] = (−1)n
dn

dλn
λ[(λ− Q̃)−1]s,f

∣∣∣
λ=0

= n!
∑
y

(−Q−f )
−(n+1)
sy Q̃yf .

In addition to computing its moments, the probability density function of τ may
be computed numerically using the inverse Laplace transform.

Appendix C. A simple example

Here is the “toy model” from the paper, described in more detail and shown in
Figure 1 of the main text. The promoter assembly process is a Markov chain with
four states:

• a closed promoter unassociated with any transcription factors;
• an open promoter with a loaded polymerase ready to transcribe;
• an engaged polymerase where the polymerase has successfully escaped the

promoter; item a completed mRNA transcript.

The assembly process may switch back and forth between the closed and open
state, depending on the arrival and stable binding of the appropriate transcription
factors. Once in the actively transcribing state, the system can only leave by
successful completion of transcription (i.e. entering state 4), at which time it returns
to the closed promoter state and polymerase loading can occur again. The delay
between induction and mRNA synthesis is represented by the time it takes the
chain to get from state 1 to state 4, as depicted in Figure 1.

Regulation of this gene expression cascade depends on the state of a second
Markov chain that describes and enhancer. The latter chain has only two states, A
and B. The enhancer modifies the behavior of the promoter chain by the require-
ment that the enhancer chain must be in state B for the promoter chain to make
a certain transition step. We vary the identity of this gated or regulated step and
compare the resulting transcription time distributions.

We say the process is initiation regulated if the step from closed to open (transi-
tion 1→ 2 in Figure 1A) is regulated by the enhancer chain. That is, the enhancer
chain must be in state B for the promoter chain to leave the closed state and the
enhancer chain cannot leave state B while the promoter chain is in the open state.
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On the other hand, we say the process is elongation regulated if the step from
engaged polymerase to completed mRNA transcript (transition 3→ 4 in the Figure
1) is regulated by the enhancer chain. That is, the enhancer chain must be in state
B for the promoter chain to move from the engaged state to the completed state.
In both cases, the enhancer chain is unconstrained by the promoter chain.

These two couplings of the enhancer and promoter chains define the two new
Markov chains shown in Figure 1B.

Having defined the system we can now compute the distribution of first passage
times from a state with naked DNA to a state where the first mRNA is transcribed.
The generator matrix for the initiation regulated model is (refer to Figure 1C, “IR
composite” chain)

Q̃I =



1A 1B 2B 3B 4

1A ∗ kab 0 0 0
1B kba ∗ k12 0 0
2B 0 k21 ∗ k23 0
3B 0 0 0 ∗ k34
4 0 0 0 0 ∗

,
where ∗ denotes the appropriate quantity so that the rows sum to zero. The elon-
gation regulated model has generator matrix (refer to Figure 1C, “ER composite”
chain)

Q̃E =



1A 2A 3A 1B 2B 3B 4

1A ∗ k12 0 kab 0 0 0
2A k21 ∗ k23 0 kab 0 0
3A 0 0 ∗ 0 0 kab 0
1B kba 0 0 ∗ k12 0 0
2B 0 kba 0 k21 ∗ k23 0
3B 0 0 kba 0 0 ∗ k34
4 0 0 0 0 0 0 ∗


.

In both cases the distinguished states s and f are, respectively, state 1A (en-
hancer in state A and promoter in state 1) and state 4 (the gene is actively tran-
scribing). With the help of a symbolic package such as Sage or Mathematica, we
can apply (B.1) to find analytic expressions for the moments of the transcription
time in each model. Doing so results in lengthy expressions (from which we spare
the reader) and no obvious consistent ordering between the two schemes; but nu-
merical evaluation shows that over the vast majority of parameter space, the ER
scheme is faster than the IR scheme (the mean transcription time is smaller), but
also more noisy (the variance of the transcription time and the transcript count
variability are both larger). The distribution of the log ratios for the speed, degree
of synchrony, and variation in total transcripts made are plotted in Figure 1 in the
main text.

Examining the parameter combinations at which the IR model is faster (his-
tograms are show in Figure ??) reveals that for this to be true, k12 must be fast,
while kba must be slow, and kab must be even slower. This seems to be allowing
both chains to reach state 3B at about the same time, since the transition 1 → 2
is fast, at which point the ER chain has a chance of falling back to state 3A, a
possibility that the IR chain avoids.
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Figure 1. Histograms of the distributions of those parameter val-
ues where the IR scheme is faster than the ER scheme (top row),
more synchronous the ER scheme (middle row) or less noisy in
terms of total transcripts than the ER scheme (bottom row).

Appendix D. Decomposition into sequential modules

In this section we present and prove analytical tools for the decomposition of a
detailed transcription model into modules connected in a sequential manner. We
proceed somewhat abstractly at first, but the connection with models of transcrip-
tion will soon become clear.

D.1. Set-up and notation. Suppose we have a sequence of continuous-time
Markov chains Xk on a sequence of state spaces X k for k ∈ {1, 2, . . . , n}. Sup-
pose that each state space X k has two distinguished (and distinct) states sk and
fk. Each Markov chain Xk represents a single “stage” of the transcription factor
assembly. We assume that fk is accessible from any state in X k, for each k. The
entire process of transcription is modeled by a Markov chain X that is constructed
by stringing the state spaces together sequentially, identifying sk with fk−1 for
2 ≤ k ≤ n, and leaving the transition rates the same. We call the state fk = sk+1

the kth pinch point, and denote it by pk.
For some state b ∈ X k and a Markov chain Y on X k, define

τb(Y ) = inf{t > 0 : Y (t) = b},

the time it takes the chain Y to first arrive at b.
Once Xk leaves sk, there are several possible behaviors, and we need to introduce

chains that behave as Xk conditioned on each behavior. For each k, let νks (·) denote
the distribution of Xk after the first jump from sk, namely, if T is the time of the
first jump, then

νks (i) = P{XT = i |X0 = s}.
Similarly, let νkf (·) denote the probability distribution of Xk after the first jump

from fk. Write Xk
→ for a Markov chain on X k that has the distribution of Xk

begun with distribution νks and conditioned to hit fk before returning to sk; also
write Xk

� for the chain that has the distribution of Xk begun with distribution νks
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Figure 2. A schematic of the decomposition. The probabilities
ak, bk, ck, and dk depend only on the distributions of both adjacent
chains Xk and Xk+1, while the behavior of X between pinch points
pk−1 and pk only depends on the distribution of Xk.

and conditioned to return to sk before hitting fk. Define Xk
← and Xk

	 similarly but
with the roles of sk and fk reversed. Define the following four random traversal
times

τk→ = τfk(Xk
→)

τk← = τsk(Xk
←)

τk� = τsk(Xk
�)

τk	 = τfk(Xk
	).

(D.1)

Denote the pinch points p0, . . . , pn, where p0 = s1, pn = fn, and pk =
{fk identified with sk+1} for 1 ≤ k ≤ n−1. If the chain X is at the kth pinch point
pk, for 1 ≤ k ≤ n − 1, then it has four options with the following corresponding
probabilities

ak = P{ hit pk+1 without returning to pk },
bk = P{ hit pk−1 without returning to pk},
ck = P{ move into X k+1 but return to pk before hitting pk+1 },
dk = P{ move into X k but return to pk before hitting pk−1 }.

(D.2)

If X is at either of the pinch points p0 or pn it has only two options. Once we
choose one of these options, X then moves like a conditioned Xk chain until it hits
a pinch point again. For instance, if the event with probability ak happens, then
pk+1 will be the next pinch point hit, and until pk+1 is hit the chain X moves like
the chain Xk

→. We compute the probabilities ak, bk, ck, dk in Subsection D.4.
When the chain leaves a pinch point and returns, it could have done so in either

direction, so we combine τ	 and τ� to form an additional traversal time. For each

1 ≤ k ≤ n let τk◦ be a mixture of τk+1
� and τk	, defined by

(D.3) τk◦ =

{
τk+1
� with probability ck

ck+dk
,

τk	 with probability dk
ck+dk

.

If ck = 0 and dk > 0 then τk◦ = τk+1
� , if ck > 0 and dk = 0 then τk◦ = τk	,

and if ck = dk = 0 then we define τk◦ = 0 (although this will not enter into the
computations).

The glue that joins the above modules together is the “pinch chain” Z, defined
to be the discrete-time Markov chain that records the order in which X visits the
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pinch points. Formally, Z is a Markov chain on the state space {0, 1, . . . , n} that
at each step either moves up by one, down by one, or stays put, and the transition
probabilities are, for 0 ≤ k ≤ n,

P{Zk+1 = j |Zk = i} =


ai, if j = i+ 1 ≤ n,
bi, if j = i− 1 ≥ 0,

ci + di, if j = i,

0, otherwise.

(D.4)

We define P to be the transition matrix for the chain Z stopped upon hitting n, so
that

Pij = P{Z1 = j |Z0 = i}, for 0 ≤ i ≤ n− 1, 0 ≤ j ≤ n,
Pnj = 0, for 0 ≤ j ≤ n− 1,

Pnn = 1.

(D.5)

We discuss computation of P in Subsection D.4.
Finally, for each pinch point 0 ≤ k ≤ n − 1, define an independent random

variable Sk with the exponential distribution

(D.6) P{Sk > t} = exp
{
−t(rk(f) + rk+1(s))

}
,

where rk(f) is the jump rate out of fk for Xk, and rk+1(s) is the jump rate out of
sk+1 for Xk+1. The random variable Sk has the distribution of the amount of time
X spends at pk before moving.

D.2. Computing system noise properties. Now we are ready to state our the-
oretical results. First we give the form of the Laplace transform and the moments of
the assembly time in terms of the transition probabilities between modules and the
distributions of the traversal times. In Subsection D.4 we discuss how to compute
the transition probabilities, and in Subsection D.5 we discuss how to compute the
relevant quantities for the traversal times.

Theorem D.1. Recall the matrix P from (D.5). For 0 ≤ j ≤ n− 1 and 0 ≤ k ≤ n
set

τjk =


τ j← + Sj , if k = j − 1 and Pjk > 0,

τ j◦ + Sj , if k = j and Pjk > 0,

τ j+1
→ + Sj , if k = j + 1 and Pjk > 0,

0, otherwise,

where the various random variables are as defined as in (D.1), (D.3) and (D.6).
Furthermore, put

φjk(λ) = E[exp(−λτjk)],

and consider the n×n matrix W with entries Wjk = φjk(λ)Pjk for 0 ≤ j, k ≤ n−1.
Let v(λ) be a vector with vn(λ) = 1 and

vi(λ) =

n−1∑
j=0

(I −W )−1ij φjn(λ)Pjn

for 0 ≤ i ≤ n− 1.
Then, the total time to assembly, τ = inf{t > 0 : Xt = fn}, has Laplace trans-

form
E[exp(−λτ) | X0 = pi] = vi(λ)
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for 0 ≤ i ≤ n.

Corollary D.2. Define matrices M , Σ, and R by

Mij = PijE[τij ], 0 ≤ i ≤ n− 1, 0 ≤ j ≤ n,(D.7)

Σij = PijE[τ2ij ], 0 ≤ i ≤ n− 1, 0 ≤ j ≤ n,(D.8)

Rij =

{
(I − P−n)−1ij , 0 ≤ i ≤ n− 1, 0 ≤ j ≤ n− 1,

0, i = n, 0 ≤ j ≤ n− 1.
(D.9)

Then, the first and second moments of the random time τ are

E[τ | X0 = pi] = (RM1)i

E[τ2 | X0 = pi] =
(
RΣ1 + 2(RM)21

)
i

(D.10)

for 0 ≤ i ≤ n− 1.

Remark D.3 (Random starting state). We have treated the starting state as fixed,
but this need not be the case. If, for instance, after transcription is completed,
the PIC returns to an intermediate state, then the delay between subsequent tran-
scription events could be modeled as the time to transcription begun at a random
state added to the (in general random) time required for actual transcription. So,
if after transcription the chain waits time W and independently jumps to state
I, then the time delay between transcriptions is D = W + τ (I), where τ (I) has
the distribution of τ if X0 = pI , and I = i with probability wi, for some prob-
abilities wi with

∑n−1
i=0 wi = 1. Then we have that E[D] = E[W ] + E[τ (I)], and

Var[D] = Var[W ] + Var[τ (I)], and

E[τ (I)] =
∑
i

wi (RM1)i

E
[(
τ (I)

)2]
=
∑
i

wi
(
RΣ1 + 2(RM)21

)
i

(D.11)

for 0 ≤ i ≤ n− 1.

Theorem D.1 is the solution we needed to compute the Laplace transform of
the total transition time, τ , from the transition times between the modules of the
larger chain. The corollary will be useful in computing moments without having
to recompute the derivatives of the Laplace transform of τ for each model one
examines. We will next prove both the theorem and the corollary. The reader
primarily interested in the method and not the proof may jump to Section D.4,
where we show how the Laplace transforms of the transitions between modules can
be computed from the rate matrices for those modules.

Proof of Theorem D.1. To prove Theorem D.1, we decompose the path of X by
first looking at the order in which X traverses the pinch points — the sample path
of the pinch chain Z — and then according to the path that Z takes, add in the
appropriate random amounts of time for each step. The Laplace transform of the
assembly time will be put together from two pieces: the joint probability generating
function of the transition counts of the pinch chain and the Laplace transforms of
the relevant traversal times.
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Set Z0 = 0, and write T for the first time that Z hits n, after which Z stays
fixed. Define for each pair of states (j, k) the transition count

Njk = #{1 ≤ i ≤ T : Zi−1 = j and Zi = k}.

That is, Njk is the number of times the chain Z moves from j to k. If k is not one
of j − 1, j, or j + 1, then Njk will be zero.

The following lemma giving the joint probability generating function of the tran-
sition counts is proved in Subsection D.6.

Lemma D.4. Let {zij} be a set of dummy variables with zij ∈ [0, 1] for all 0 ≤
i, j ≤ n. Define the matrix P (z)jk = zjkPjk and define the vector v(z) by v(z)n = 1
and

(D.12) v(z)i =

n−1∑
j=0

(
(I − P (z)−n)−1

)
ij
P (z)jn for 0 ≤ i ≤ n− 1,

where P (z)−n is the matrix P (z) with the last row and column removed. Then,

E

∏
jk

z
Njk

jk

∣∣∣∣∣∣ Z0 = i

 = vi(z).

Suppose Zi = k, indicating that X is in state pk. The amount of time before
X leaves pk has the distribution of Sk, so we need to add an independent copy of
Sk. If Zi+1 = k + 1, then X will hit pk+1 before returning to pk. By construction,
the amount of time this takes has the same distribution as τk+1

→ , so we need to
add on a copy of τk+1

→ , whose value is independent of everything else. Similarly,
if Zi = k and Zi+1 = k − 1, we need to add on a copy of τk←. If Zi = Zi+1 = k,
then this corresponds to a single excursion of X from the kth pinch point that
could have been in either direction. In this case, we need to add a random time τk◦
that is a mixture of the distribution of τk+1

� with probability ck/(ck + dk) and the

distribution of τk	 with probability dk/(ck + dk), as defined in (D.3).

Let the total time to assembly be denoted τ , and for each k let τk→,1, τ
k
→,2, . . . be

an infinite sequence of independent copies of τk→; define τk←,m and τk◦,m for m ≥ 1

similarly. Also let Sk1,m, Sk2,m, and Sk3,m be three infinite sequences of independent

copies of Sk. Our decomposition in terms of the path of Z tells us that τ is
distributed as

n∑
k=0

Nk,k−1∑
m=1

(
τk←,m + Sk1,m

)
+

Nk,k∑
m=1

(
τk◦,m + Sk2,m

)
+

Nk,k+1∑
m=1

(
τk+1
→,m + Sk3,m

) .

Therefore, by conditioning on Z, we get

E
[
e−λτ

]
= E

 n∏
k=0

Nk,k−1∏
m=1

e−λ(τ
k
←,m+Sk

1,m)

Nk,k∏
m=1

e−λ(τ
k
◦,m+Sk

2,m)

Nk,k+1∏
m=1

e−λ(τ
k+1
→,m+Sk

3,m)


= E

[
n∏
k=0

(
E[e−λ(τ

k
←+Sk)]Nk,k−1E[e−λ(τ

k
◦+Sk)]Nk,kE[e−λ(τ

k+1
→ +Sk)]Nk,k+1

)]
.

This proves Theorem D.1. �
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Note that since, for instance, Sk and τk	 are independent, we may compute their
Laplace transforms and moments separately. Furthermore,

(D.13) E
[
e−λτ

k
◦

]
=

1

ck + dk

(
ckE

[
e−λτ

k+1
�

]
+ dkE

[
e−λτ

k
	

])
.

Proof of Corollary D.2. Without loss of generality, take X0 = p0. We leave this
implicit and write, for instance, E[τ ] = E[τ |X0 = p0].

Note that by differentiating the result of Lemma D.1 we get

E[τ ] =

n−1∑
j=0

n∑
k=0

E[τjk]∂zjkv0(1),

E[τ2] =

n−1∑
j=0

n∑
k=0

E[τ2jk]∂zjkv0(1)

+

n−1∑
j=0

n∑
k=0

n−1∑
`=0

n∑
m=0

E[τjk]E[τ`m]∂zjk∂z`mv0(1).

(D.14)

We compute the derivatives of v at z = 1. For ease of notation, write ∂zjk as
∂jk. Because P (z)v(z) = v(z),

∂jkv(z) = (∂jkP (z))v(z) + P (z)∂jkv(z).

Now, since v(1) = (1, 1, 1, . . . , 1)T and

(∂jkP (z))qr =

{
Pjk, if q = j, and r = k,

0, otherwise,

∂jkv(1) solves the set of linear equations (I − P )∂jkv(1) = Pjkej , where ej is the
jth standard basis vector. More explicitly,

∂jkv(1)i −
∑
r

Pir∂jkv(1)r =

{
Pjk, if i = j,

0, otherwise.

Since we require that v(z)n = 1, we have ∂jkv(z)n = 0.
For the moment, write Im for the identity matrix of order m. Because In+1−P

is the transition matrix for an irreducible continuous-time Markov chain stopped
upon reaching n, it follows that the matrix In − P−n is invertible. Define R to be
(In − P−n)−1 with an extra row of zeros at the bottom, as in the statement of the
corollary, and let w be the jth column of R. It is easy to check that (I −P )w = ej ,
and that this solution is unique over vectors whose last entry is zero. Thus,

∂jkv(1)i = RijPjk

for 0 ≤ i ≤ n− 1 and 0 ≤ j, k ≤ n.
Differentiating the identity a second time, we get

∂jk∂lmv(z) = (∂2jkP (z))v(z) + (∂jkP (z))∂lmv(z)

+ (∂lmP (z))∂jkv(z) + P (z)∂2jkv(z).
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Now let u = ∂jk∂lmv(1). Since ∂jk∂lmP (z) = 0, the vector u satisfies (In+1−P )u =
Pjk∂lmv(1)kej + Plm∂jkv(1)mel, or, using our solution for the first derivative,

ui −
∑
r

Pirur =


PjkPlmRkl, if i = j,

PlmPjkRmj , if i = l,

0, otherwise.

By linearity, we can use our solution from above to solve this system. Thus,

∂jk∂lmv(z)i = PjkPlm (RilRmj +RijRkl) .

Evaluating the sums in (D.14) gives (D.10). �

D.3. Transition counts for the pinch-chain.

Proof of Lemma D.4. Define a matrix P (z) by P (z)jk = zjkPjk. It is easy to see
that the joint probability generating function for the transition counts Njk is given
by

E

∏
jk

z
Njk

jk

 = lim
m→∞

(Pm(z))0,n.

For this to be nonzero, we must take znn = 1. Also, since the matrix P (z) is
substochastic and the last row of P (z) is zero except for a 1 on the diagonal, P (z)
has a single eigenvalue of value 1, with left eigenvector π = (0, 0, . . . , 1). Any
tridiagonal real matrix (aij) satisfying ai,i+1ai+1,i > 0 for all i is similar to a
symmetric matrix and, in particular, such a matrix has a full complement of real
eigenvalues with corresponding left and right eigenvectors [1]. Therefore, P (z) has
a unique right eigenvector with eigenvalue 1, that we call v(z) and normalize so
that vn(z) = 1. The other eigenvalues are strictly less than one, so

lim
m→∞

(Pm(z))jk = πkvj(z),

whence

E

∏
jk

z
Njk

jk

 = v0(z).

By Lemma D.9, the unique solution of the eigenvector equation P (z)v(z) = v(z)
with the normalization vn(z) = 1 is

v(z)i =

n−1∑
j=0

(I − P−n)−1ij Pjn.

Note that, by conditioning on the first step of the chain, vi(z) = E
[∏

jk z
Njk

jk

∣∣∣ Z0 = i
]

is a solution to P (z)v(z) = v(z). �
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D.4. Transition probabilities between modules. Here we compute the transi-
tion probabilities (ak, bk, ck, dk), defined in (D.2). Consider the tridiagonal matrix
P with entries

P =



1− a0 a0
b1 1− (b1 + a1) a1

b2 1− (b2 + a2) a2
. . .

bn−1 1− (bn−1 + an−1) an−1
0 1


.

Suppose that Xk jumps out of fk at rate rkf , Xk+1 jumps out of sk+1 at rate

rk+1
s , and the probability that Xk+1 begun at sk+1 reaches fk+1 before returning

to sk+1 is q. Then,

(D.15) ak = qrk+1
s /(rkf + rk+1

s ).

Similarly, if the probability that Xk begun at fk reaches sk before returning to fk
is q′, then

bk = q′rkf/(r
k
f + rk+1

s ).

Also ck = (1− q)rk+1
s /(rkf + rk+1

s ) and dk = (1− q′)rkf/(rkf + rk+1
s ). We need only

compute q and q′ for each component chain Xk separately.
For the remainder of this section, let Y be an irreducible continuous-time Markov

chain with distinguished states s and f , and matrix of transition rates G, where
Gii = −

∑
j 6=iGij as usual.

Define G∗∗ to be the matrix of transition rates for Y stopped at both s and f .
That is,

G∗∗ij =

{
Gij , if i 6= s, f,

0, otherwise.

Note that if we define

(D.16) xi = P{Y hits f before s | Y0 = i},

then it is well-known that [2]∑
j

G∗∗ij xj = 0 for all i.

In other words, x is the unique right eigenvector of G∗∗ corresponding to the zero
eigenvalue that satisfies the boundary conditions xs = 0 and xf = 1.

By Lemma D.9, if we denote by G−sf the submatrix obtained from G by remov-
ing rows and columns corresponding to both s and f , then, for i /∈ {s, f},

(D.17) xi =
∑

j /∈{s,f}

(−G−sf )−1ij Gjf .

We require P{Y hits f before s | Y0 = s}, i.e. the probability q in (D.15).
We find this probability by conditioning on the state the chain goes to at the time
it first leaves the state s. Let S be the time that Y first leaves s. This random
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variable has an exponential distribution with rate −Gss =
∑
j 6=sGsj . Thus,

P{Y hits f before s | Y0 = s} =
∑
i

P{YS = i}

× P{Y hits f before s | Y0 = i}

=
∑
i

Gsi
−Gss

xi.

We summarize the above computations. Let (Gk, xk) be the objects discussed
above that are associated with the kth chain and let (ak, bk, ck, dk) be defined as in
(D.2). By definition, b0 = d0 = an = cn = 0. If we take G0

ff = Gn+1
ss = 0, then

ak =
Gk+1
ss

Gk+1
ss +Gkff

∑
i6=s

Gk+1
si

−Gk+1
ss

xk+1(i)

= −
∑
i 6=s

Gk+1
si

Gk+1
ss +Gkff

xk+1(i), for 0 ≤ k ≤ n− 1,

=
1

−Gk+1
ss −Gkff

Gk+1
sf +

∑
i/∈{s,f}

∑
j /∈{s,f}

Gk+1
si (Gk+1

−sf )−1ij G
k+1
jf


and similarly

bk = −
∑
i 6=f

Gkfi

Gk+1
ss +Gkff

(1− xk(i)), for 1 ≤ k ≤ n,

ck = −
∑
i 6=s

Gk+1
si

Gk+1
ss +Gkff

(1− xk+1(i), ) for 0 ≤ k ≤ n− 1,

dk = −
∑
i 6=f

Gkfi

Gk+1
ss +Gkff

xk(i), for 1 ≤ k ≤ n.

D.5. Traversal times within modules. Here we show how to compute quantities
related to the traversal times. Again let Y be an irreducible Markov chain with
transition matrix G, and let G∗∗ be the transition matrix for Y stopped upon
hitting either s or f , so that G∗∗ij = Gij for i /∈ {s, f} and Gsj = Gfj = 0.

Lemma D.5. Let τ→, τ←, τ�, and τ	 be defined as in (D.1) for a chain with
matrix of transition probabilities G. Let xs = 0, xf = 1, and

xi =
∑

j /∈{s,f}

(−G−sf )−1ij Gjf .

The Laplace transforms are then given by

E[e−λτ→ ] =
∑

i/∈{s,f}:xi>0

Gsi
−Gss

λ
(
(λ−G∗∗)−1

)
if

xi
,(D.18)

E[e−λτ← ] =
∑

i/∈{s,f}:xi<1

Gfi
−Gff

λ
(
(λ−G∗∗)−1

)
is

(1− xi)
,(D.19)
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E[e−λτ� ] =
∑

i/∈{s,f}:xi<1

Gsi
−Gss

λ
(
(λ−G∗∗)−1

)
is

(1− xi)
,(D.20)

E[e−λτ	 ] =
∑

i/∈{s,f}:xi>0

Gfi
−Gff

λ
(
(λ−G∗∗)−1

)
if

xi
.(D.21)

Corollary D.6. The moments of the traversal times τ→ and τ� are

E[τm→] = m!
∑

i,j /∈{s,f}:xi>0

Gsi(−G−sf )
−(m+1)
ij Gjf

(−Gss)xi

E[τm� ] = m!
∑

i,j /∈{s,f}:xi<1

Gsi(−G−sf )
−(m+1)
ij Gjs

(−Gss)(1− xi)

(D.22)

The moments of τ← and τ	 are found by exchanging the roles of s and f , which
also interchanges xi and (1− xi).

Note that E[e−λτ
k
◦ ] is obtained by substituting the results of the corollary into

(D.13).

Remark D.7. To use these in Theorem D.1 we need to translate the τjk defined
there into combinations of the above traversal times. For convenience, we record
here which entries of the matrices φ, M or Σ depend on the probability distributions
of which traversal times. The following (n+ 1)× (n+ 1) matrix is tridiagonal, and
the (j, k)th entry contains the random variables on whose distributions the (j, k)th

entry of φ, M , or Σ depend.

φ,M,Σ depend on



τ1� τ1→
τ1← (τ1	, τ

2
�) τ2→

τ2← (τ2	, τ
3
�) τ3→

. . .

τn−1← (τn−1	 , τn�) τn→
0 0


.

The empty entries are identically zero.
Also, recall that Sk is exponentially distributed with rate −Gk+1

ss −Gkff . Thus,

E[e−λS
k

] =
−Gk+1

ss −Gkff
λ−Gk+1

ss −Gkff
and

E[(Sk)n] =
n!

(−Gk+1
ss −Gkff )n

.

Remark D.8. At first sight, (D.18) does not appear to give the right answer at
λ = 0. However, recall that G∗∗ is not invertible. As we show in Lemma D.9,[
limλ→0 λ(λ−G∗∗)−1

]
if

= xi, so

lim
λ→0

E[e−λτ→ ] =
∑
i 6=s

Gsi
−Gss

xi
xi

= 1.
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Proof of Lemma D.5 and Corollary D.6. Let Y→ denote the chain Y conditioned
to hit the state f before hitting s, and let Y ∗∗ be the chain Y stopped upon hitting
either s or f . Denote by A→ the event that Y hits f before hitting s. For i /∈ {s, f},

P{Y→t = j |Y→0 = i} =
P{Yt = j, A→ |Y0 = i}

P{A→ |Y0 = i}

=
P{Y ∗∗t = j |Y ∗∗0 = i}P{A→ |Y0 = j}

P{A→ |Y0 = i}

=
(
etG

∗∗
)
ij

xj
xi
.

Therefore, if τ→ is the first time that Y→ hits f and S is the first time that Y
leaves s, then, by conditioning on S and YS ,

E[e−λτ→ ] =
∑
i 6=s

Gsi
−Gss

λ

∫ ∞
0

P{Y→t = f |Y→0 = i}e−λtdt

=
∑
i 6=s

Gsi
−Gss

λ
(
(λ−G∗∗)−1

)
if

xi

=
∑
i 6=s

Gsi
−Gss

λ
(
(λ−G∗∗)−1

)
if

xi
.

Note by a quick computation with Lemma D.9 that if we define x by

xi = lim
λ→0

λ(λ−G∗∗)−1if

then x is the unique solution to G∗∗x = 0 with xf = 1 and xs = 0, and so coincides
with our definition of x in (D.16).

Differentiating and using Lemma D.9 gives (D.22). �

D.6. Inverses and singular matrices.

Lemma D.9. Let A be a block upper triangular matrix of the form

A =

[
A11 A12

0 0

]
,

where the dimensions of A11, A12 and A are respectively m×m, m× k and (m+
k) × (m + k), and suppose that (λ − A11) is invertible for all λ ∈ [0, ε) for some
ε > 0. Then,

lim
λ→0

λ(λ−A)−1 =

[
0 −A−111 A12

0 I

]
,

and

(−1)n∂nλλ(λ−A)−1
∣∣∣
λ=0

=

[
−n!(−A11)−n n!(−A11)−(n+1)A12

0 0

]
.

Furthermore, if c is a vector of length k, then the unique solution to

Ax = 0

(xm+1, . . . , xm+k) = c

is

x =

[
−A−111 A12c

c

]
.
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Proof of Lemma D.9. By the block inversion formula for a 2× 2 block matrix,

(λ−A)−1 =

[
(λ−A11)−1 1

λ (λ−A11)−1A12

0 1
λI

]
.

Using the following identity for differentiating the inverse of a matrix

∂tB(t)−1 = −B(t)−1(∂tB(t))B(t)−1,

and differentiating each entry, we see that

(−1)n∂nλλ(λ−A)−1 =

[
n!(λ−A11)−(n+1)A11 n!(λ−A11)−(n+1)A12

0 0

]
.

Since A11 is invertible, we can take the limit as λ→ 0 from above.
That x solves Ax = 0 is obvious; we need only justify that it is the unique

solution. This follows since A11 is invertible, and so A has rank m.
�

Appendix E. Decomposition into parallel modules

In the elongation regulated model, there are two processes that must come to
completion for transcription to occur: promoter assembly and enhancer recruit-
ment. These two processes evolve independently of one another (in parallel) and
transcription may begin only when both are in the correct state simultaneously.
The sequential decomposition method does not apply to the elongation model, so
in this section we introduce tools for simplifying the analysis of such parallel com-
positions of chains. A parallel composition of chains is a collection of noninteracting
Markov chains, each with a distinguished final state, each of which must be in its
final state for transcription to occur. In general, it does not seem possible to express
the first two moments of the traversal time for the composite chain with only the
first two moments of each component chain or similar quantities, as the example in
Subsection E.1 will show. It is still possible to compute quantities for the composite
chain in terms of the component chains through a spectral decomposition, which
we discuss in this section. In Subsection E.1, we discuss a simple approximation
for the case of a two–state enhancer chain.

Formally, we again have a sequence of continuous-time Markov chains Xk on
a sequence of state spaces X k, for k ∈ {1, 2, . . . , n}, each with two distinguished
(and distinct) states sk and fk. We assume that each has at most one absorbing
state, and so has a generator that can be diagonalized by an invertible matrix. The
composite Markov chain X is simply the product chain on the Cartesian product∏n
i=1 X k given by Xt = (X1

t , . . . , X
n
t ), where X1, . . . , Xn evolve independently. A

state x for the product chain X is of the form x = (x1, x2, . . . , xn), where xk ∈ X k
for each 1 ≤ k ≤ n. We denote by G the transition rate matrix of the full chain X,
and Gk for the transition rate matrix of Xk.

First we review a few facts about these composite matrices. The generator, G,
is defined as follows. If states x and y only differ in a single entry: xi 6= yi, but
xj = yj for all j 6= i, thenGxy = Gixiyi . If x and y differ in more than one entry, then
Gxy = 0; and Gxx = −

∑
y 6=xGxy. Since the chains are independent, the transition

probability matrix P (t) for the composite chain is the Kronecker product of the
transition probability matrices P i(t) for each subchain: P (t)xy =

∏
i P

i(t)xiyi .



18

Below, we will want to compute (λI −G)−1, which we can do using information
about only the component chains. Suppose each Gk has eigenvalues λki with cor-
responding left and right eigenvectors `ki and rki , for 1 ≤ i ≤ mk. If an eigenspace
has dimension greater than one (as will be the case if fk is absorbing) then any
choice of of eigenvectors that spans the eigenspace may be made as long as `ki is
orthogonal to rkj for i 6= j. If for each Gk we pick some right eigenvector and
form a vector in the product space in the natural way, then the resulting prod-
uct vector will be a right eigenvector of G with eigenvalue equal to the product
of the respective eigenvalues. Under our assumptions, all right eigenvectors of G
are formed in this way and they span the product space. Formally, we know that
for each i1, . . . , in with 1 ≤ ik ≤ mk, the product λi1,...,in =

∏
λij is an eigen-

value for G, with corresponding left and right eigenvectors `i1,...,in(x) =
∏
k `

k
ik

(xk)

and ri1,...,in(x) =
∏
k r

k
ik

(xk), where x = (x1, . . . , xn). To be clear about notation,

` = `i1,...,in is a vector in the product space
∏
X k, and so is indexed by elements

x ∈
∏
X k of the form x = (x1, . . . , xn). We form the product vector ` be saying

that `i1,...,in(x) =
∏
k `

k
ik

(xk). Furthermore, this provides a spectral decomposition
of G, giving the result that

(λI −G)−1xy =
∑

i1,...,in

(λ−
∏
k

λkik)−1
∏
k

rkik(xk)`kik(yk),

where the sum is over distinct n-tuples of indices with 1 ≤ ik ≤ mk.
We suppose that transcription (or the jump to the next stage) occurs at rate ρ

while X is in state f = (f1, . . . , fn). Thus, we are interested in the time until death
of the chain X if it is killed at rate ρ while in state f . The Feynman-Kac formula
gives a way to compute the Laplace transforms and moments of the killing times
— for an excellent discussion, see [3]. If Π is the projection matrix with Πff = 1
and Πij = 0 otherwise, and if τ is the killing time, then

Ex [exp(−λτ)] = ρ (λI −G+ ρΠ)
−1
xf

This is equation (48) in [3] (but beware the differences in notation).
Since G is of product form, and we can find its spectral decomposition in terms of

the spectral decompositions of the component chains, it would be nice to compute
(λI − G + ρΠ)−1 in terms of (λI − G)−1. This turns out to be possible, thanks
to the following lemma, which is a special case of the Matrix Inversion Lemma,
also known as the Sherman-Morrison-Woodbury formula [4]. This allows us to
compute an explicit expression for E[e−λτ ], if we have a spectral decomposition of
each product chain.

Lemma E.1. Let B be an invertible m × m matrix, and let u and v be m-
dimensional vectors such that vtBu 6= −1/ρ. Then,

(B + ρuvt)−1 = B−1 − ρ

1 + ρvtB−1u
B−1uvtB−1.

Remark E.2. The lemma allows us to compute the inverse of a rank-one correction
to B easily using only B−1 — if u and v are the ith and jth basis vectors respectively,
then (B−1uvtB−1)xy = B−1xi B

−1
jy , while vtB−1u = B−1ij .

Using this lemma, if we let q = (λI −G)−1ff , we may write

(λI −G+ ρΠ)−1xy = (λI −G)−1xy −
ρ

1 + ρq
(λI −G)−1xf (λI −G)−1fy ,
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and hence

Ex [exp(−λτ)] = ρ(λI −G)−1xf

{
1− ρ

1 + ρq
(λI −G)−1ff

}
=

ρ

1 + ρ(λI −G)−1ff
(λI −G)−1xf .

Remark E.3. If we take ρ→∞, we get the expression for Laplace transform of the
first hitting time of f (denoted here by τf ) as the ratio of two terms in the resolvent

Ex[exp(−λτf )] =
(λI −G)−1xf

(λI −G)−1ff
.

This relation may, of course, also be obtained by recognizing that λ(λI − G)−1 =∫∞
0
λe−λtPtdt and using the strong Markov property.

E.1. A simple approximation for a parallel two-state enhancer. We now
consider a special case. Let X be a Markov chain with distinguished states s and
f , and further assume that once X is in the final state f , it does not leave. Let Y
be an independent two-state chain Y that takes values in {0, 1}, that moves from
0 to 1 at rate α and moves from 1 to 0 with rate β. The transition probabilities for
Y are

P{Yt = 1 |Y0 = 0} =
α

α+ β
(1− e−(α+β)t).

We construct a chain on the product space by saying that transcription occurs once
X is in state f and Y is in state 1. Let τ be the first time this occurs,

τ = inf{t ≥ 0 : Xt = f and Yt = 1}.
Let τX be the first time that X hits the state f , and let W be an independent

exponential random variable with rate α. Then, since X does not leave state f ,

(E.1) τ
d
= τX + (1− YτX )W

whence

E[exp(−λτ)] =

(
α

α+ β
+

β

(α+ β)(α+ λ)

)
E[exp(−λτX)]

− α

α+ β

(
1 +

1

α+ λ

)
E[exp(−(λ+ α+ β)τX)]

and (working directly from (E.1))

E[τ ] = E[τX ] +
1

α+ β
E
[
1− e−(α+β)τX

]
E[τ2] = E[τ2X ] + 2

1

α+ β
E
[
τX

(
1− e−(α+β)τX

)]
+

2

α(α+ β)
E
[
1− e−(α+β)τX

]
.

Therefore, it seems that computing the moments of τ requires the full Laplace
transform of τX . However, if τX is reasonably large relative to α+ β, then a good
approximation is

E[τ ] ≈ E[τX ] +
1

α+ β

E[τ2] ≈ E[τ2X ] + 2
1

α+ β
E[τX ] +

2

α(α+ β)
.
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Appendix F. Defining ‘Paused’ Genes

Unfortunately the term “polymerase pausing” has been used in the literature
to describe several different phenomena. One common usage refers to momentary,
stochastic pauses which occur during transcription. Another is based on the notion
of a “pausing index,” comparing the bound polII at the promoter to the mean
bound polII along the internal gene.

Our definition incorporates all the features that Jon Lis [5], originally described
for the heat shock genes when he first termed them ‘paused’. The gene has an
induced and uninduced state, and in either of these states polymerase can be found
at the promoter. Moreover, around 50 base-pairs downstream of the TSS the poly-
merase can be found in a stable but non-elongating state, with fully 5’ capped
mRNA, phosphorylated Ser 5, and there is no phosphorylation on Ser 2 of the
C-terminal domain tail. An additional feature we require is that the regulatory
machinery exert its influence at the release from the paused state. An obvious
corollary to this requirement is that the gene of interest must have separable reg-
ulatory machinery (i.e. some cis-regulatory element/enhancer which controls its
expression in response to some particular spatiotemporal signals). Some of the
genes identified as “paused” in other works [5, 6] are constitutively active and lack
independent response elements. Expression of these genes is not covered by our
description.

An expectation for regulation of the release from the paused state is that more
polymerase will be found bound at promoter regions than in the gene, and thus
many genes with large pausing indices have been postulated to be paused. Re-
cent development of the Global Run-On assay [7] permits measurement of levels
of transcriptionally engaged polymerase on a genome-wide scale and allows poly-
merase that is cycling rapidly on and off the promoter to be distinguished from
transcriptionally engaged, paused polymerase. Ongoing work has started to apply
this technique with tissue specific genomic material, finally allowing a global assess-
ment of promoter-bound polymerase in tissues where the gene is not induced to be
compared to tissues where it is induced. Current estimates from this work put the
number of pausing regulated genes in Drosophila to be around 10-15%, and include
many of the most important patterning genes like snail.

Appendix G. Experimental Approaches to testing hypothesis about
total mRNA numbers

A central prediction of our work is the potential effect of elongation regulation on
cell-to-cell variation in the total number of transcripts. Recent advances in molec-
ular imaging could be adapted to test this hypothesis directly in the appropriate
system, by direct counting of individual, fluorescently labeled cytoplasmic mRNAs
in each cell in a fixed embryo, and comparing the count between all sister cells in
a common tissue.

Current developments in labeling and imaging technology allow for sensitive
detection of individual molecules [8–10]. If the concentration of mRNA is suffi-
ciently large that individual molecules are within half a wavelength of the detection
light, they can be resolved using Stochastic Optical Reconstruction Microscopy
(STORM), a sub-diffraction limited method of imaging wherein a small fraction of
the labeled samples are photo-switched into the detectable emission spectra at a
time, imaged until bleaching, and then a new subset is photo-switched by a short
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pulse into the detectable spectra [11]. Individual Gaussian or Airy functions are
then fit to the large collection of (overlapping) diffraction limited spots to find their
centers, thereby allowing the spots be separated and individually counted at a 10–
100nm resolution, depending on the set-up. For review of this technique, we direct
the reader to Bates 2008 [12]. For a combined perspective on single molecule imag-
ing and its application to transcription, we direct the reader to “Single-molecule
approaches to stochastic gene expression”, Raj and van Oudenaarden, Annual re-
view of biophysics [8].
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