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Text S1

Adjunction (proof)

We provide a proof of adjointness adapted from [1] to the more general case where actions also vary.

Here, we write (X∗, ·, ε) for the free monoid on the set X with binary associative operator · and identity

ε.

Definition (ASet). The category ASet (sets with actions) has objects (Q,X, δ) that consist of a

set Q, and a set X whose members “act on” members of Q, and a map δ : Q×X → Q, which specifies

these actions. Thus, if q ∈ Q and x ∈ X, then δ(q, x) ∈ Q is the result of x acting on q. The morphisms

of ASet are the functions (g, ρ) : (Q,X, δ) → (R, Y, γ), that is, pairs of maps g : Q→ R and ρ : X → Y ,

such that the following diagram commutes:

Q×X
δ //

g×ρ
²²

Q

g

²²
R× Y γ

// R

(1)

where the identity morphism 1Q,X,δ is the pair of identity maps (1Q, 1X), and compositions are defined

component-wise. That is, the composition of (g, ρ) : (Q,X, δ) → (R, Y, γ) and (h, σ) : (R, Y, γ) → (S,Z, ξ)

is (h, σ) ◦ (g, ρ) : (Q,X, δ) → (S,Z, ξ), and it is indeed an ASet morphism, that is, the following diagram

commutes:

Q×X
δ //

g×ρ
²²

Q

g

²²
R× Y

γ //

h×σ
²²

R

h

²²
S × Z

ξ
// S

(2)

It is straightforward to prove that ASet is a category, by showing the morphisms satisfy the laws of

identity and associativity.

Definition (run map). The run map of an object (Q,X, δ) is the unique map δ∗ : Q × X∗ → Q,
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defined inductively by:

δ∗(q, ε) = q, ∀q ∈ Q (3)

δ∗(q, w · [x]) = δ(δ∗(q, w), x), ∀q ∈ Q,w ∈ X∗, x ∈ X. (4)

If we regard X as a subset of X∗, i.e. as the part of X∗ consisting of “lists” of length 1, then δ∗(q, [x]) =

δ∗(q, ε · [x]) = δ(δ∗(q, ε), x) = δ(q, x), so δ∗ does indeed agree with δ on Q×X ⊂ Q×X∗.

It is immediate that if (Q,X, δ) is an ASet, then so is (Q×X∗, X, µQ,X), where µQ,X : (Q×X∗)×X →
Q×X∗, such that µQ,X : ((q, w), x) 7→ (q, w · [x]).

Proposition. If (Q,X, δ) is an ASet, then the following diagram commutes:

(Q×X∗)×X
µQ,X //

δ∗×1X

²²

Q×X∗

δ∗

²²
Q×X

δ
// Q

(5)

That is, (δ∗, 1x) is a morphism of ASets.

Proof. For all q ∈ Q, w ∈ X∗, x ∈ X,

δ∗ ◦ µQ,X((q, w), x) = δ∗(q, w · [x]) (definition of µQ,X)

= δ(δ∗(q, w), x) (Equation 4)

= δ ◦ (δ∗ × 1X)((q, w), x)

Recall the forgetful functor U : ASet → Set× Set, such that U : (T,Z, ζ) 7→ (T,Z).

Theorem. Define a functor F : Set × Set → ASet as follows: F0 : (Q,X) 7→ (Q × X∗, X, µQ,X).

A Set × Set morphism is a pair of maps (j, τ) : (Q,X) → (R, Y ), i.e., j : Q → R and τ : X → Y .

The result of applying F1 : (Q × X∗, X, µQ×X∗,X) → (R × Y ∗, Y, µR×Y ∗,Y ) to the morphism (j, τ) is

(j × τ∗, τ). Define η : 1ASet → U ◦ F on each object (Q,X) to be ηQ,X : (q, x) 7→ ((q, ε), x). Then F is

the left adjoint of U , and η is the unit of the adjunction. F (Q,X) is called the free ASet on (Q,X).

Proof. It is routine to check that F1(j, τ) is an ASet morphism. To prove that F is the left adjoint,

we have to show for any ASet (R, Y, γ), so γ : R×Y → R, and any pair of maps (g, ρ) : (Q,X) → (R, Y ),

where g : Q→ R and ρ : X → Y , that there exists a unique morphism of ASets ψ : (Q×X∗, X, µQ,X) →
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(R, Y, γ), such that (g, ρ) = U(ψ) ◦ ηQ,X . Such a morphism ψ must consist of a pair of maps, ψ = (h, χ),

where h : Q×X∗ → R, and χ : X → Y . So, we are looking for a unique morphism ψ = (h, χ), such that

(g, ρ) = (h, χ) ◦ ηQ,X , that is, the following diagram commutes:

(Q,X)
ηQ,X//

(g,ρ) &&MMMMMMMMMM
(Q×X∗, X)

(h,χ)

²²

(Q×X∗, X, µQ,X)

ψ

²²Â
Â
Â

(R, Y ) (R, Y, γ)

(6)

and since ψ = (h, χ) is a morphism, such that the following diagram also commutes:

(Q×X∗)×X
µQ×X∗,X //

h×χ
²²

Q×X∗

h

²²
R× Y γ

// R

(7)

We have to show that the commutativity of Diagrams 6 and 7 determines ψ uniquely. Diagram 6 says

that for all q ∈ Q, x ∈ X

(h, χ) ◦ ηQ,X(q, x) = (g, ρ)(q, x)

i.e., (h, χ)((q, ε), x) = (g(q), ρ(x))

i.e., (h(q, ε), χ(x)) = (g(q), ρ(x)).

Thus, Diagram 6 forces, for all x ∈ X, χ(x) = ρ(x), i.e., χ = ρ, and for all q ∈ Q,

h(q, ε) = g(q). (8)

Equation 8 forms the base part for the recursive definition of h.

Following the clockwise path in Diagram 7 applied to q ∈ Q, w ∈ X∗, x ∈ X gives us h ◦
µQ×X∗,X((q, w), x) = h(q, w · [x]), by definition of µ. Following the anticlockwise path in Diagram 7

gives us, since χ = ρ, γ ◦ (h × χ)((q, w), x) = γ ◦ (h, ρ)((q, w), x) = γ(h(q, w), ρ(x)). Commutativity of

Diagram 7 requires these two paths to be equal, i.e.,

h(q, w · [x]) = γ(h(q, w), ρ(x)). (9)
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This equation provides the recursive part of the definition of h. So, if h exists, then it satisfies Equations 3

and 9.

The length of a string w was defined in Diagram 11. It is now straightforward to prove by induction

on the length of w that h(q, w) = γ∗(g(q), ρ∗(w)), for all q ∈ Q, w ∈ X∗, where γ∗ : R × Y ∗ → R is the

run map of (R, Y, γ).

Base: If length(w′) = 0, w′ = ε, so h(q, w′) = h(q, ε) = g(q). But, γ∗(g(q), ρ∗(w′)) = γ∗(g(q), ρ∗(ε)) =

γ∗(g(q), ε) = g(q), by definition of the run map γ∗, so in this case h(g(q), ε) = g(q). So, the base case is

proven.

Inductive step: If length(w′) > 0, then w′ = w · [x] for w ∈ X∗, x ∈ X, so

h(q, w′) = h(q, w · [x])

= γ(h(q, w), ρ(x)) (Equation 9)

= γ(γ∗(g(q), ρ∗(w)), ρ(x)) (induction hypothesis)

= γ((g(q), ρ∗(w) · ρ(x)) (definition of γ∗)

= γ((g(q), ρ∗(w · [x]) (definition of ρ∗)

= γ((g(q), ρ∗(w′)). (as required)

As the base and inductive cases are proven, the principle of induction establishes the result.
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