Text S1

Adjunction (proof)

We provide a proof of adjointness adapted from [1] to the more general case where actions also vary. Here, we write $\left(X^{*}, \cdot, \epsilon\right)$ for the free monoid on the set X with binary associative operator \cdot and identity ϵ.

Definition (ASet). The category ASet (sets with actions) has objects (Q, X, δ) that consist of a set Q, and a set X whose members "act on" members of Q, and a map $\delta: Q \times X \rightarrow Q$, which specifies these actions. Thus, if $q \in Q$ and $x \in X$, then $\delta(q, x) \in Q$ is the result of x acting on q. The morphisms of ASet are the functions $(g, \rho):(Q, X, \delta) \rightarrow(R, Y, \gamma)$, that is, pairs of maps $g: Q \rightarrow R$ and $\rho: X \rightarrow Y$, such that the following diagram commutes:

where the identity morphism $1_{Q, X, \delta}$ is the pair of identity maps $\left(1_{Q}, 1_{X}\right)$, and compositions are defined component-wise. That is, the composition of $(g, \rho):(Q, X, \delta) \rightarrow(R, Y, \gamma)$ and $(h, \sigma):(R, Y, \gamma) \rightarrow(S, Z, \xi)$ is $(h, \sigma) \circ(g, \rho):(Q, X, \delta) \rightarrow(S, Z, \xi)$, and it is indeed an ASet morphism, that is, the following diagram commutes:

It is straightforward to prove that ASet is a category, by showing the morphisms satisfy the laws of identity and associativity.

Definition (run map). The run map of an object (Q, X, δ) is the unique map $\delta^{*}: Q \times X^{*} \rightarrow Q$,
defined inductively by:

$$
\begin{align*}
\delta^{*}(q, \epsilon) & =q, \quad \forall q \in Q \tag{3}\\
\delta^{*}(q, w \cdot[x]) & =\delta\left(\delta^{*}(q, w), x\right), \quad \forall q \in Q, w \in X^{*}, x \in X . \tag{4}
\end{align*}
$$

If we regard X as a subset of X^{*}, i.e. as the part of X^{*} consisting of "lists" of length 1 , then $\delta^{*}(q,[x])=$ $\delta^{*}(q, \epsilon \cdot[x])=\delta\left(\delta^{*}(q, \epsilon), x\right)=\delta(q, x)$, so δ^{*} does indeed agree with δ on $Q \times X \subset Q \times X^{*}$.

It is immediate that if (Q, X, δ) is an ASet, then so is $\left(Q \times X^{*}, X, \mu_{Q, X}\right)$, where $\mu_{Q, X}:\left(Q \times X^{*}\right) \times X \rightarrow$ $Q \times X^{*}$, such that $\mu_{Q, X}:((q, w), x) \mapsto(q, w \cdot[x])$.

Proposition. If (Q, X, δ) is an ASet, then the following diagram commutes:

That is, $\left(\delta^{*}, 1_{x}\right)$ is a morphism of ASets.
Proof. For all $q \in Q, w \in X^{*}, x \in X$,

$$
\begin{aligned}
\delta^{*} \circ \mu_{Q, X}((q, w), x) & =\delta^{*}(q, w \cdot[x]) & \text { (definition of } \left.\mu_{Q, X}\right) \\
& =\delta\left(\delta^{*}(q, w), x\right) & \text { (Equation 4) } \\
& =\delta \circ\left(\delta^{*} \times 1_{X}\right)((q, w), x) & \square
\end{aligned}
$$

Recall the forgetful functor $U:$ ASet \rightarrow Set \times Set, such that $U:(T, Z, \zeta) \mapsto(T, Z)$.
Theorem. Define a functor $F:$ Set \times Set \rightarrow ASet as follows: $F_{0}:(Q, X) \mapsto\left(Q \times X^{*}, X, \mu_{Q, X}\right)$. A Set \times Set morphism is a pair of maps $(j, \tau):(Q, X) \rightarrow(R, Y)$, i.e., $j: Q \rightarrow R$ and $\tau: X \rightarrow Y$. The result of applying $F_{1}:\left(Q \times X^{*}, X, \mu_{Q \times X^{*}, X}\right) \rightarrow\left(R \times Y^{*}, Y, \mu_{R \times Y^{*}, Y}\right)$ to the morphism (j, τ) is $\left(j \times \tau^{*}, \tau\right)$. Define $\eta: 1_{\text {ASet }} \rightarrow U \circ F$ on each object (Q, X) to be $\eta_{Q, X}:(q, x) \mapsto((q, \epsilon), x)$. Then F is the left adjoint of U, and η is the unit of the adjunction. $F(Q, X)$ is called the free ASet on (Q, X).

Proof. It is routine to check that $F_{1}(j, \tau)$ is an ASet morphism. To prove that F is the left adjoint, we have to show for any ASet (R, Y, γ), so $\gamma: R \times Y \rightarrow R$, and any pair of maps $(g, \rho):(Q, X) \rightarrow(R, Y)$, where $g: Q \rightarrow R$ and $\rho: X \rightarrow Y$, that there exists a unique morphism of ASets $\psi:\left(Q \times X^{*}, X, \mu_{Q, X}\right) \rightarrow$
(R, Y, γ), such that $(g, \rho)=U(\psi) \circ \eta_{Q, X}$. Such a morphism ψ must consist of a pair of maps, $\psi=(h, \chi)$, where $h: Q \times X^{*} \rightarrow R$, and $\chi: X \rightarrow Y$. So, we are looking for a unique morphism $\psi=(h, \chi)$, such that $(g, \rho)=(h, \chi) \circ \eta_{Q, X}$, that is, the following diagram commutes:

and since $\psi=(h, \chi)$ is a morphism, such that the following diagram also commutes:

We have to show that the commutativity of Diagrams 6 and 7 determines ψ uniquely. Diagram 6 says that for all $q \in Q, x \in X$

$$
\begin{aligned}
\quad(h, \chi) \circ \eta_{Q, X}(q, x) & =(g, \rho)(q, x) \\
\text { i.e., } \quad(h, \chi)((q, \epsilon), x) & =(g(q), \rho(x)) \\
\text { i.e., } \quad(h(q, \epsilon), \chi(x)) & =(g(q), \rho(x)) .
\end{aligned}
$$

Thus, Diagram 6 forces, for all $x \in X, \chi(x)=\rho(x)$, i.e., $\chi=\rho$, and for all $q \in Q$,

$$
\begin{equation*}
h(q, \epsilon)=g(q) . \tag{8}
\end{equation*}
$$

Equation 8 forms the base part for the recursive definition of h.
Following the clockwise path in Diagram 7 applied to $q \in Q, w \in X^{*}, x \in X$ gives us $h \circ$ $\mu_{Q \times X^{*}, X}((q, w), x)=h(q, w \cdot[x])$, by definition of μ. Following the anticlockwise path in Diagram 7 gives us, since $\chi=\rho, \gamma \circ(h \times \chi)((q, w), x)=\gamma \circ(h, \rho)((q, w), x)=\gamma(h(q, w), \rho(x))$. Commutativity of Diagram 7 requires these two paths to be equal, i.e.,

$$
\begin{equation*}
h(q, w \cdot[x])=\gamma(h(q, w), \rho(x)) . \tag{9}
\end{equation*}
$$

This equation provides the recursive part of the definition of h. So, if h exists, then it satisfies Equations 3 and 9 .

The length of a string w was defined in Diagram 11. It is now straightforward to prove by induction on the length of w that $h(q, w)=\gamma^{*}\left(g(q), \rho^{*}(w)\right)$, for all $q \in Q, w \in X^{*}$, where $\gamma^{*}: R \times Y^{*} \rightarrow R$ is the run map of (R, Y, γ).

Base: If length $\left(w^{\prime}\right)=0, w^{\prime}=\epsilon$, so $h\left(q, w^{\prime}\right)=h(q, \epsilon)=g(q)$. But, $\gamma^{*}\left(g(q), \rho^{*}\left(w^{\prime}\right)\right)=\gamma^{*}\left(g(q), \rho^{*}(\epsilon)\right)=$ $\gamma^{*}(g(q), \epsilon)=g(q)$, by definition of the run map γ^{*}, so in this case $h(g(q), \epsilon)=g(q)$. So, the base case is proven.

Inductive step: If length $\left(w^{\prime}\right)>0$, then $w^{\prime}=w \cdot[x]$ for $w \in X^{*}, x \in X$, so

$$
\begin{aligned}
h\left(q, w^{\prime}\right) & =h(q, w \cdot[x]) & & \\
& =\gamma(h(q, w), \rho(x)) & & \text { (Equation 9) } \\
& =\gamma\left(\gamma^{*}\left(g(q), \rho^{*}(w)\right), \rho(x)\right) & & (\text { induction hypothesis) } \\
& =\gamma\left(\left(g(q), \rho^{*}(w) \cdot \rho(x)\right)\right. & & \text { (definition of } \left.\gamma^{*}\right) \\
& =\gamma\left(\left(g(q), \rho^{*}(w \cdot[x])\right.\right. & & \text { (definition of } \left.\rho^{*}\right) \\
& =\gamma\left(\left(g(q), \rho^{*}\left(w^{\prime}\right)\right) .\right. & & \text { (as required) }
\end{aligned}
$$

As the base and inductive cases are proven, the principle of induction establishes the result.

References

1. Arbib MA, Manes EG (1975) Arrows, structures, and functors: The categorical imperative. London, UK: Academic Press.
