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S1 Calculations supporting main paper

S1.1 The System Size Expansion

Here we show how to derive the linear noise approximation in section 2.4 of the main text.
We start with the Master equation, which describes the evolution of the probability distribution for

the discrete system. Let pk,l(t) = P(k excitatory
and l inhibitory neurons are active at time t). We make the simplification that NE = NI = N . Starting
from the decomposition k = NẼ = NE+N1/2ξE , l = NĨ = NI +N1/2ξI , we derive from this equations
for the evolution of the deterministic part (E, I) and the fluctuating part (ξE , ξI). The evolution equations
take the form of a series with a small parameter N−1/2.

The Master equation is then

dpk,l(t)
dt

= α [(k + 1)pk+1,l(t)− kpk,l(t)]

+ [(N − k + 1)f (sE(k − 1, l)) pk−1,l(t)
− (N − k)f (sE(k, l)) pk,l(t)]

+ α [(l + 1)pk,l+1(t)− lpk,l(t)]
+ [(N − l + 1)f (sI(k, l − 1)) pk,l−1(t)

− (N − l)f (sE(k, l)) pk,l(t)] (1)

where the synaptic inputs are sE = wEEE−wEII +h and sI = wIEE−wEII +h, and f is the response
function. Following [1] introduce the shift operators e∂k and e∂l , which formally express

f(k + 1) = e∂kf(k) = f(k) + ∂kf(k) +
1
2
∂k

2f(k) +
1
3!
∂k

3f(k) . . . . (2)
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So that the Master equation can be rewritten as

dpk,l(t)
dt

= α
(
e∂k − 1

)
kpk,l(t)

+
(
e−∂k − 1

)
(N − k)f (sE(k, l)) pk,l(t)

+ α
(
e∂l − 1

)
lpk,l(t)

+
(
e−∂l − 1

)
(N − l)f (sE(k, l)) pk,l(t)

= −∂k
[
NAE

(
k

N
,
l

N
pk,l(t)

)]
+

1
2
∂k

2

[
NDE

(
k

N
,
l

N

)
pk,l(t)

]
− 1

3!
∂k

3

[
NAE

(
k

N
,
l

N

)
pk,l(t)

]
+ . . .

− ∂l
[
NAI

(
k

N
,
l

N

)
pk,l(t)

]
+

1
2
∂l

2

[
NDI

(
k

N
,
l

N

)
pk,l(t)

]
− 1

3!
∂k

3

[
NAI

(
k

N
,
l

N

)
pk,l(t)

]
+ . . . (3)

where we define drift and diffusion functions

AE(x, y) = −αx+ (1− x)f (wEEx− wEIy + h)
DE(x, y) = αx+ (1− x)f (wEEx− wEIy + h)
AI(x, y) = −αy + (1− y)f (wIEx− wIIy + h)
DI(x, y) = αy + (1− y)f (wIEx− wIIy + h) . (4)

Note that the A’s, which are the difference in transition rates, give the expected increment, or drift, in
each population. The D’s, which are the sums of the transition rates, will give the noise amplitude.

We use the Taylor expansions

AE(E +N−1/2ξE , I +N−1/2ξI)

= AE(E, I) +N−1/2ξEAE,E(E, I)

+N−1/2ξIAE,I(E, I) +N−1 1
2
ξ2
EAE,EE(E, I)

+N−1ξEξIAE,EI(E, I) +
1
2
N−1ξ2

IAE,II(E, I) + . . . (5)

and so on. Our aim is to expand the Master equation as a Taylor series in (ξE , ξI) about the deterministic
solution (E, I). First note that, because of the factor N1/2 in k = NE + N1/2ξE , l = NI + N1/2ξI , we
may write

∂

∂ξE
= N1/2 ∂

∂k

∂

∂ξI
= N1/2 ∂

∂l
(6)
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We replace the probability distribution over the original variables, pk,l(t), with a distribution over the
fluctuations, Π(ξE , ξI , t). The time derivatives are related via

∂tpk,l(t) = ∂tΠ(ξE , ξI , t) + ∂tξE∂ξE
Π + ∂tξI∂ξI

Π

= ∂tΠ(ξE , ξI , t)−N1/2∂tE∂ξE
Π−N1/2∂tI∂ξI

Π (7)

where the second substitution comes from the fact that (E, I) and N−1/2(ξE , ξI) are both time-dependent
variables, yet their sum (k, l) is independent of time in the sense that (∂tk, ∂tl) = (0, 0). Simultaneously
expanding p, and the A’s and D’s, the terms of order N1/2 give rise to equations for the deterministic
terms

dE

dt
= AE(E, I) = −αE + (1− E)f(sE)

dI

dt
= AI(E, I) = −αI + (1− I)f(sI) (8)

which are the Wilson-Cowan equations [2].
The fluctuation distribution Π(ξE , ξI ; t) obeys the partial differential equation

∂tΠ = −AE,E∂ξE
[ξEΠ]−AE,I∂ξE

[ξIΠ]−AI,E∂ξI
[ξEΠ]

−AI,I∂ξI
[ξIΠ] +

1
2
DE∂ξE

2Π +
1
2
DI∂ξI

2Π

−N−1/2 1
2
{
AE,EE∂ξE

[
ξ2
EΠ
]

+ 2AE,EI∂ξE
[ξEξIΠ]

+ AE,II∂ξE

[
ξ2
IΠ
]}

−N−1/2 1
2
{
AI,EE∂ξI

[
ξ2
EΠ
]

+ 2AI,EI∂ξI
[ξEξIΠ]

+ AI,II∂ξI

[
ξ2
IΠ
]}

+N−1/2 1
2
{
DE,E∂E

2[ξEΠ] +DE,I∂E
2[ξIΠ]

}
+N−1/2 1

2
{
DI,E∂E

2[ξEΠ] +DI,I∂E
2[ξIΠ]

}
−N−1/2 1

6
{
AE∂E

3Π +AI∂I
3Π
}

+O(N−1) (9)

where AE,IE = ∂ξI∂ξE
AE , and so on, are all evaluated at the solutions (E, I) of (8). These equations

generalize the one population system-size expansion of the master equation reported in [3]. See also [4].
If we drop terms of O(N−1/2) and smaller, then equation (9) becomes a Fokker-Planck equation with

linear drift term and additive noise. This is called the linear noise approximation and its solutions are
Gaussian [1]. It is more transparent to write the linear noise approximation as the equivalent Itô form
Langevin equation

d

dt

(
ξE
ξI

)
= A

(
ξE
ξI

)
+
(√

DEηE√
DIηI

)
(10)

where the A terms are from the Jacobian matrix of the Wilson-Cowan equations

A(E, I) =
(
AE,E(E, I) AE,I(E, I)
AI,E(E, I) AI,I(E, I)

)
(11)
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where

AE,E(E, I) = −α− f(sE) + (1− E)wEEf ′(sE) (12)
AE,I(E, I) = −(1− E)wEIf ′(sE) (13)
AI,E(E, I) = (1− I)wIEf ′(sI) (14)
AI,I(E, I) = −α− f(sI)− (1− I)wIIf ′(sI) . (15)

The ηE and ηI are independent white noise variables with variance 1, and the D terms governing the
noise amplitude in (10) are given by

DE(E, I) = αE + (1− E)f (wEEE − wEII + hE)
DI(E, I) = αI + (1− I)f (wIEE − wIII + hI) . (16)

All the terms in (10) are evaluated at the deterministic solution, (E, I).
If the population sizes are not equal, the expansion carries through in essentially the same way, using

two small parameters N−1/2
E and N

−1/2
I . We start with the decomposition k = NEẼ = NEE +N

1/2
E ξE ,

l = NII + N
1/2
I ξI , and similarly derive equations for the evolution of the deterministic part (E, I) and

the fluctuating part (ξE , ξI). A key difference is

∂

∂ξE
= N

1/2
E

∂

∂k

∂

∂ξI
= N

1/2
I

∂

∂l
. (17)

If the populations are very different in size, for example NE = 4NI in a cortical column [5], then we
expect the perturbation series in the larger excitatory population to converge more quickly, and so the
inhibitory population would have a larger direct noise influence.

S1.2 Avalanche case

Given now the symmetric conditions wIE = wEE = wE , wEI = wII = wI , and hE = hI = h, we make a
change of variables to the mean Σ and difference ∆ where(

Σ
∆

)
=
(

1/2 1/2
1/2 −1/2

)(
E
I

)
(18)

as in [6]. In this rotated frame the deterministic equations become

dΣ
dt

= −αΣ + (1− Σ)f(s)

d∆
dt

= −∆ (α+ f(s)) (19)

which has unique stable solution (Σ0, 0). The factor of ∆ in the equation for d∆
dt ensures that the difference

is zero at the fixed point, in other words the activity in both populations is equal, i.e. E0 = I0 = Σ0.
Note that the input

s = wEE − wII + h

= (wE − wI)Σ + (wE + wI)∆ + h (20)

is the same for both populations, in this symmetric case.
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Similarly, equation (10) becomes

d

dt

(
ξΣ
ξ∆

)
= Ã

(
ξΣ
ξ∆

)
+
(

1/2 1/2
1/2 −1/2

)(√
DEηE√
DIηI

)
(21)

where

Ã =
(

1/2 1/2
1/2 −1/2

)
A

(
1 1
1 −1

)
(22)

After an initial transient, the solution settles near the fixed point (Σ,∆) = (Σ0, 0). In that case, the
Jacobian (22) simplifies to the upper triangular form

Ã =
(
−λ1 wff

0 −λ2

)
. (23)

Meanwhile, equation (19) tells us that (1− Σ0)f(s0) = αΣ0, so that

DE = DI = αΣ0 + (1− Σ0)f(s0) = 2αΣ0 (24)

and, because the sum and difference of independent Gaussians with equal variance are both independent
Gaussians, the noise term is (

1/2 1/2
1/2 −1/2

)(√
DEηE√
DIηI

)
=
√
αΣ0

(
ηΣ

η∆

)
(25)

where ηΣ and η∆ are independent white noise variables. So, the linear noise approximation in the mean
and difference variables is considerably simplified as

d

dt

(
ξΣ
ξ∆

)
=
(
−λ1 wff

0 −λ2

)(
ξΣ
ξ∆

)
+
√
αΣ0

(
ηΣ

η∆

)
. (26)

The upper triangular matrix, Ã, is the functionally feedforward structure: the value of ξ∆ feeds forward
into the evolution of ξΣ but the value of of ξΣ does not directly feed back into the evolution of ξ∆.

S1.2.1 Moment Equations for Avalanche case

From (9), we may write down moment equations for the fluctuations (ξE , ξI) [1]. However, it is easier to
calculate the moments in the variables (Σ,∆). The Jacobian and diffusion terms are given in (26) above.
The second derivatives are

ÃΣ,ΣΣ(Σ,∆) = −2w0f
′(sΣ) + (1− Σ)w2

0f
′′(sΣ)

ÃΣ,Σ∆(Σ,∆) = −(wE + wI)f ′(sΣ) + (1− Σ)w0(wE + wI)f ′′(sΣ)

ÃΣ,∆∆(Σ,∆) = (1− Σ)(wE + wI)2f ′′(sΣ)

Ã∆,ΣΣ(Σ,∆) = −w2
0∆f ′′(s∆)

Ã∆,Σ∆(Σ,∆) = −w0f
′(s∆)− w0(wE + wI)∆f ′′(s∆)

Ã∆,∆∆(Σ,∆) = −2(wE + wI)f ′(s∆)− (wE + wI)2∆f ′′(s∆) (27)

At the fixed point (Σ0, 0), the last three of equations (27) simplify to

Ã∆,ΣΣ(Σ0, 0) = 0

Ã∆,Σ∆(Σ0, 0) = −w0f
′(s∆)

Ã∆,∆∆(Σ0, 0) = −2(wE + wI)f ′(s∆) (28)
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where w0 = wE − wI .
The evolution equations for the means are

d

dt
〈ξΣ〉 = −λ1 〈ξΣ〉+ wff 〈ξ∆〉+O(N−1/2)

d

dt
〈ξ∆〉 = −λ2 〈ξ∆〉+O(N−1/2) (29)

The second central moments have evolution equations

d

dt
Var(ξΣ) = −2λ1 Var(ξΣ) + 2wff Cov(ξΣ, ξ∆) + αΣ0

d

dt
Var(ξ∆) = −2λ2 Var(ξ∆) + αΣ0

d

dt
Cov(ξΣ, ξ∆) = −(λ2 + λ1) Cov(ξΣ, ξ∆) + wff Var(ξ∆) (30)

to order N0, with stationary solutions to the same order of

Var(ξ∆) =
αΣ0

2λ2

Cov(ξΣ, ξ∆) =
αΣ0wff

2λ2(λ2 + λ1)

Var(ξΣ) =
αΣ0

2λ1

(
1 +

w2
ff

λ2(λ2 + λ1)

)
. (31)

S1.3 Corrections to the mean at order N−1

If we add next-order terms into the equations (29), the evolution equations for the means contain correc-
tion terms at order N−1/2

d

dt
〈ξΣ〉 = −λ1 〈ξΣ〉+ wff 〈ξ∆〉

+
1
2
N−1/2

(
AΣ,ΣΣ

〈
ξ2
Σ

〉
+

+ 2AΣ,Σ∆ 〈ξΣξ∆〉+AΣ,∆∆

〈
ξ2
∆

〉)
+O(N−1)

d

dt
〈ξ∆〉 = −λ2 〈ξ∆〉

+
1
2
N−1/2

(
2A∆,Σ∆ 〈ξΣξ∆〉+A∆,∆∆

〈
ξ2
∆

〉)
+O(N−1) (32)

We will substitute the stationary solutions for the variances (31) into these, and then derive stationary
solutions for the means themselves by setting their derivatives to zero. Note that to order N0, the 2nd
moments are the 2nd central moments, and that the effect of substitution will be to produce corrections
to the means at order N−1.

The correction term for the mean of fluctuations in the sum, ξΣ is
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cΣ =
αΣ0

4
N−1/2

[
AΣ,ΣΣ

1
λ1

(
1 +

w2
ff

λ2(λ2 + λ1)

)

+ 2AΣ,Σ∆
wff

λ2(λ2 + λ1)
+AΣ,∆∆

1
λ2

]
= −αΣ0

4λ1
N−1/2

[
2w0f

′ − (1− Σ0)w2
0f
′′]

−
αΣ0w

2
ff

2λ2
N−1/2

[(
w0f

′ − (1− Σ0)w2
0f
′′/2
)

λ1(λ2 + λ1)

+
1

(λ2 + λ1)

(
1

1− Σ0
− w0f

′′

f ′

)
− f ′′

2(1− Σ0)(f ′)2

]
(33)

where we used the definition wff = (1 − Σ0)(wE + wI)f ′ to simplify the expression. Similarly, the
correction term for the difference ∆ is

c∆ =
αΣ0

4
N−1/2

[
2A∆,Σ∆

wff
λ2(λ2 + λ1)

+A∆,∆∆
1
λ2

]
= −αΣ0

4
N−1/2

[
2w0f

′ wff
λ2(λ2 + λ1)

+ 2(wE + wI)f ′
1
λ2

]
= −αΣ0wff

2λ2
N−1/2

[
w0f

′

(λ2 + λ1)
+

1
(1− Σ0)

]
(34)

It may be checked that these correction terms are negative, so that increasing wff lowers the mean to
order N−1.
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Figure Legends
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Figure S1. Avalanche size and duration distributions for different time bin sizes. Avalanche
distributions from a single simulation with parameter values hE = hI = 0.001, w0 = wE − wI = 0.2,
wE +wI = 5.8, and N = 800. Left column, ∆t = 0.024 = 〈ISI〉; right column, ∆t = 1 ≈ 4 〈ISI〉. Upper
graphs show the distribution of avalanche size in numbers of spikes, and lower graphs show the
distribution of avalanche duration, i.e. the elapsed time between the first and last spike in an avalanche,
in msec. Note that the data shows power law fit in all cases, but the slope of the distribution changes
with the time bin size.


