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1 Parameters of the model

Here we discuss further details of the parameterization of the model. We provide a description of the

parameters that we use in the main text and their corresponding values in Table 1 below. Parameters that

deserve special consideration are the habitat carrying capacity Nd, the direct transmissibility β, the exposure

rate ρ, and the re-scaled environmental infectiousness αω†. These are as follows:

• The value of Nd is chosen such that the model in absence of infection yields ∼5,000 to 6,000 susceptibles,

in agreement with observed duck population sizes in the wild [1].

• β is a study parameter. Defining Rdirect
0

= Sβ/(µ+γ), a range of β between 0 and 0.05 corresponds to

a fairly large range of Rdirect
0

between 0 and 5.74. The value of 0.15 that we use for β in the simulations

described in Figs. 2, 3 of the main text corresponds to an Rdirect
0 ∼ 1.6.

• The exposure rate ρ is given by the drinking rate of the duck (ranging from 2.5 × 103 to 2.5 ×

104 liters/year [2]) divided by the volume of water that dilutes the virus. Since we are not modeling

a particular pool of water, the choice of ρ remains somehow arbitrary. Therefore, in Sec. 4 of this

supplement, we explore the robustness of our results with varying ρ.

• αω is a study parameter that we vary over six orders of magnitude, as little is known about this

parameter.

In the following sections of this supplement, we present further numerical explorations that support our

statements in the main text.

Table 1: The parameters of the model.

Symbol Definition Value/Range Unit

Nd habitat capacity 3000 duck

λ duck fecundity 2

β direct transmissibility 0-0.05 duck−1year−1

ρ exposure rate 10−3 year−1

α environmental infectiousness virion−1

ω virus shedding rate 105-106 virion/duck/day

αω re-scaled environmental infectiousness 1-106 duck−1year−1

µ natural death rate 1/3 year−1

γ recovery rate 52 year−1

ηb
B virus clearance rate in the breeding

grounds during the summer

5 year−1

ηb
W virus clearance rate in the breeding

grounds during the winter

1.3 year−1

ηw
W virus clearance rate in the wintering

grounds during the winter

5 year−1

ηw
B virus clearance rate in the wintering

grounds during the summer

50 year−1

†
α may be calculated using the values that we provide for αω and ω.
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2 The deterministic model without environmental transmission
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Figure 1: Bifurcation diagram of a deterministic SIR model that includes migration, seasonality, pulse

reproduction, but no environmental transmission (i.e., ρ = 0, all other parameter values are as in Table

1) versus the direct transmissibility β. The orbits are sampled yearly, at the end of the wintering season.

Note that for a large range of β, the model shows numbers of infected ducks less than one (i.e., the area

below the dotted red line) which elude a biological interpretation. All orbits sampled for Fig. 1 have at

least one point below 22. If, we discard all orbits with points below (let us say) 10 as being plagued by the

“atto-fox” phenomenon (as the fractional parts of these predictions may represent a significant percent from

their corresponding integer parts), then we are left with a very narrow β-interval for which our continuous

model has biological interpretation (i.e., the blue region). It is unlikely that this model with periodicity of

1-2 years would be validated by AIV epidemiological data from the wild habitat. In fact, prevalence data

exhibits outbreaks with a 2-4 year periodicity and possibility of extinction between the outbreaks. Since we

are particularly interested in the processes of extinction and persistence of AIV, we refined our study by

constructing a stochastic model, where the host population variables are integer-valued.

3



3 Difference-of-Gaussians wavelet analysis
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Figure 2: Fit of outbreak prevalence profile with Difference-of-Gaussians (DoG) wavelet. Given the preva-

lence time series presented in panel (a), we selected a prevalence peak and we fitted the logarithm of the

prevalence with both a quadratic and a cubic polynomial; see panel (b) where the simulation is in blue,

the quadratic fit (−0.2274z2 + 0.0512z + 2.609, where z = (t − 18.746)/0.05887) is in red and the cubic fit

(0.02088z3 − 0.2351z2 − 0.004106z + 2.612) is in black. Panel (c) plots the corresponding residuals. Note

that the residuals of the quadratic and the cubic fits are very similar (also note that the cubic coefficient is

small), suggesting that the prevalence curve can be parsimoniously described very well by a Gaussian. Since

a DoG wavelet where the subtracted Gaussian is very flat approaches a Gaussian, the outbreak prevalence

profile is fitted very well by a DoG wavelet.
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4 Numerical explorations of pattern robustness
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Figure 3: Color maps of the time-average of the number of infected 〈I〉t versus the direct transmissibility

β and the environmental infectiousness αω at different values of the recovery rate γ and the exposure rate

ρ. All the other parameters are listed in the Table 1. Each colored point is calculated by averaging the

results of 100 stochastic realizations. For each realization, a transient of 100 years was discarded and the

time average was performed over 200 years. The pattern in the central panel is further discussed in the main

text. The time-average of the number of infected does change with the parameters γ and ρ. Note, however,

that its pattern in the (αω, β) plane qualitatively stays the same even though the parameters γ and ρ vary

over a large range.
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Figure 4: Color maps of the time-average of the environmental transmission rate when the epidemic is re-

ignited versus the direct transmissibility β and the environmental infectiousness αω at different values of the

recovery rate γ and the exposure rate ρ. All the other parameters are listed in the Table 1. The simulation

details are the same as for Fig. 3. The pattern in the central panel is further discussed in the main text.

Note that the displayed pattern remains robust over a large range of γ and ρ.
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Figure 5: Color maps of the time-average of the number of infected 〈I〉t versus the direct transmissibility β

and the environmental infectiousness αω at different values of the viral persistence at the breeding site in

the summer ηb
B (which we chose to be equal to the viral persistence rate at the wintering site in the winter

ηw
W ) and the viral persistence rate at the wintering grounds in the summer ηw

B . All the other parameters are

listed in the Table 1. The simulation details are the same as for Fig. 3. The pattern in the low right panel

is further discussed in the main text. Again, we notice that the displayed pattern is robust with changing

parameters.
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Figure 6: Color maps of the time-average of the environmental transmission rate when the epidemic is re-

ignited versus the direct transmissibility β and the environmental infectiousness αω at different values of the

viral persistence at the breeding site in the summer ηb
B (which we chose to be equal to the viral persistence

rate at the wintering site in the winter ηw
W ) and the viral persistence rate at the wintering grounds in the

summer ηw
B . All the other parameters are listed in the Table 1. The simulation details are the same as for

Fig. 3. The pattern in the low right panel is further discussed in the main text. Note that the displayed

pattern remains robust with changing parameters.
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