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1 Method comparisons: general

1.1 Methods compared

We have examined the performance of our method and compared it two six other
methods: DNA copy [1], GLAD [8], CGHseg [9], and ACE [2], approaches that
have been reviewed in [3, 4], where DNAcopy and CGHseg stand as the best over-
all performers; we have also included in the comparisons the HMM [5] and non-
homogeneous HMM [6] approaches, two methods that share some common features
with our method (but see discussion). All of these approaches, except ACE, are
available as R/BioConductor packages. ACE is available as a Java program from [2];
however, this Java program is not suitable for batch processing of simulations; thus,
we implemented it as a loadable C module, and call it from R. Other promising
methods (specially [7]) could not be included in the comparative study because code
is not available or directly implementable from the available published descriptions.

1.2 Settings of methods

All methods were run with their default parameters. Details and modifications follow.
For DNA copy, and following the recommendations in [3], we have used the“merge

levels” proposal of [3]. The methods of Fridlyand et al. [5] and Marioni et al. [6]
include an internal, implicit, merge levels-like algorithm.

For ACE [2] the FDR used is the minimal one of the available (experimenting
with the method in these data set showed that other, larger, FDRs lead to much
poorer performance).

GLAD [8] was run using default parameters, and using the default approach for
post-segmentation merging. Although the performance of GLAD might improve by
fine tuning some of its many parameters, none of those have an intuitive interpre-
tation, nor is there any indication as to how these parameters should be tuned (see
also [4]).

CGHseg [9] requires the user to specify the threshold for choosing the appropriate
penalty. The default value of -0.05 seemed appropriate for the Snijders data set
(also shown in Figure 1 of the author’s paper [9]). However, this value was clearly
inadequate for the simulated data as it lead to detecting no breakpoints in essentially
all data sets. Therefore, using the first 10 data sets, and the information on the true
states, we choose the “best” threshold (-0.0025). Note that this can provide CGHseg
a slightly unfair advantage over other methods (but see also a similar tuning of ACE),
as some parameters are chosen so as to improve the performance using a small subset
of the data. The output from the comparisons used to choose the threshold is in file
“piccards.S.and.merging.selection.txt”.

RJaCGH was run with six parallel chains, each with 60000 iterations of which the
first 50000 were discarded as burn-in. For each run, two full chains were discarded
by trimming (i.e., eliminating the two most extreme observations, one on each tail,
with respect to the average estimated number of states of each chain). The parame-
ters of the distributions of the candidates were selected automatically by a heuristic
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Table 1: Confusion matrix

Predicted
Gained No change Lost

True Gained TG Gnc Gl

State No change NCg TNC NCl

Lost Lg Lnc TL

approach that, within model, leads to an acceptance probability near 0.23 [10]. The
parameters of the jumps between models were taken as the mean of the within model
parameters.

1.3 Mapping of methods’ output to gain/loss/no-change

Only ACE provides, directly, output labels that correspond to “gain/loss/no change”
status of the genes. For DNAcopy, and as in [3], we post-processed the merge levels
output, so the level with mean closest to zero, which is also the level with the largest
number of observations, was assigned to the “no change” class (which is consistent
with all assumptions in the normalization step, and most in the analysis step, that
most genes/clones are not affected by copy number changes). The remaining levels
were assigned to either “gain” or ”lost” depending on whether the smoothed value
was larger or smaller, respectively, than the “no change” class. Similar procedure was
followed with HMM and BIOHMM after these methods returned their output.

CGHseg does not incorporate a mechanism for mapping segmented data into re-
gions of loss/gain/no-change. We thus tried two approaches, one using the mergeLevels
algorithm [3] as above, and another using a naive assignment of the most com-
mon class to the unaltered state, all segments with larger smoothed mean to the
gained class, and all other to the loss class. The performance of these two ap-
proaches was compared using the first 10 data sets, with mergeLevels being clearly
the best approach. The output from the comparisons used to choose the threshold
and mergeLevels is in file “piccards.S.and.merging.selection.txt”.

For RJaCGH, our method includes a some what similar approach. We consider
as “no change” all states whose IQR (interquartile range) includes 0. After this step,
we add the groups with posterior mean closes to 0 to the “no change” class until
the proportion of observations in the no change class is no less than a pre-specified
level (by default 0.65). This procedure is consistent with the assumptions in the
normalization step that most genes/clones are not affected by copy number changes.

1.4 Statistics used to evaluate performance

We have evaluated performance of each method using four different statistics. To
understand the statistics, it is useful to refer to table 1.
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Correct classification rate The percentage of genes that are assigned to the right
class. In table 1, the sum of all diagonal terms divided by the total number
of clones. This is an overall estimate of how well a method is doing. This
is likely to be the most relevant measure in every day usage, as it combines
the measures below (and incorporates, for instance, trade-offs between False
Discovery Rate and Sensitivity).

False Discovery Rate We define it in here as the number or mistakes made when
we call something a gain or a loss: the number of no-changes among the clones
Predicted to be gains or losses. In the table above,

FDR = NCg+NCl

TG+NCg+Lg+Gl+NCl+TL

(i.e., the sum of NCg and NCl divided by the total number of those predicted
to be “gained”or “lost”). (Note that, in our comparisons, there was not a single
case, for any method, were a true gain was predicted to be a lost, or vice-versa).

Specificity The probability of predicting no change when the true state is no change.
In terms of table 1:

Specificity = TNC
NCg+TNC+NCl

Sensitivity The probability of predicting a gain (loss) outcome when the true state
is gained (lost). Here we sum over both possible deviations from no change:

Sensitivity = TG+TL
TG+Gnc+Gl+Lg+Lnc+TL

It should be noted that there are ways to achieve, e.g., great False Discovery
Rate, without being a good overall performer. For instance, by requiring very strong
evidence to call something a loss, we can reduce the False Discovery Rate, at the
expense of not identifying many changes as such (i.e., at the expense of lowering
the sensitivity). Similarly, if a method predicts no change most of the time, the
Specificity will be high at the expense of a low sensitivity.

2 Simulations

2.1 Simulation settings

We have used the same simulated data sets as Willenbrock and Fridlyand [3] used
in their recent comparison of methods of aCGH analysis [3]. Details of the data are
provided in the original paper [3]; briefly, these are data “(...) simulated to emulate
the complexity of real tumor profiles” and designed to become “(...) a standard for
systematic comparisons of computational segmentation approaches” [3, p. 4]. The
authors simulated five hundred data sets based on the profiles of real tumor samples,
and a sample-specific variance (between 0.1 and 0.2) was added to each sample. It is
unlikely that these data were simulated under a model that is specifically well suited
for our method. Other simulated data sets (or simulation approaches) did not seem
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appropriate to compare alternative approaches; most papers that present simulated
data do simulate the data under models that are the same (or very similar to) the
model used to analyze the data. The simulations in [1] are useful for examining
breakpoint detection, but not for questions related to the recovery of the correct
“gained, lost, no change” label, and the simulations in [4] are too simplistic in their
settings (only a single type of alteration added) and the number of points generated
is too short (100). The 500 data sets of Willenbrock and Fridlyand [3], however, are
suitable for examining recovery of true labels, are simulated based on real profiles to
which varying levels of noise are added, and provide a sufficiently large and diverse
data set to gain valuable information about the relative performance of different
methods.

We downloaded the data [3] from http://www.cbs.dtu.dk/~hanni/aCGH/, and
the actual file used was
http://www.cbs.dtu.dk/~hanni/aCGH/20chromosome.simulated.data.RData.
Each of the 500 simulations consisted of 20 chromosomes, with 100 clones in each
chromosome. One hundred clones per chromosome are too few points (at least for
most aCGH data for human samples) and make it hard to assess the effect of differ-
ences in spacing between clones. Thus, instead of using the 2000 clones as if divided
in 20 chromosomes, we just regarded all the 2000 clones as if they came from the
very same single chromosome which allows us to introduce fairly large numbers of
missing data (i.e., variability in spacing).

None of the data sets above included variability in inter-gene distances which,
as we argue in the paper, is an important feature of many real aCGH data sets,
and a specific problem we try to address with our method. Therefore, to assess if
our method does perform reasonably under varying inter-gene distance (and how
it performs compared to other methods) we need to add inter-gene distance to the
data set. Instead of modifying the original simulation models of [3], we have instead
introduced “holes” (or missings) in the data thus replicating a situation where the
data are generated according to the models in [3], but the actual observed data is
a sample from the generated data (such as is the case with many aCGH platforms
that show unequal coverage of different parts of the genome).

The “holes”or missing fragments in the data have been created with a very simple
model: we choose at random 100 locations in the genome, and eliminate a contiguous
segment of clones. The length of this segment is modeled with a Poisson distribution
(so the actual length of the segment that is missing is drawn, randomly, from a
Poisson distribution with parameter λ). This λ parameter determines the average
number of missing points; in addition, as this is a Poisson distribution (where the
variance is = λ), increasing λ results in an increase in the variance of the length of
the missing fragments. We have used, for the λ parameter, the values 2, 5, 10, or 13.
Thus, for each original data set, we obtain another four data sets, with a different
number of missing data points. On average, the derived data sets have 10%, 25%,
50% and 65%. In other words, from the 500 data sets, we generate another 2000
data sets. Thus, of the 2500 data sets, each subset of 500 has an average number
of missing points of 0% (in this case, 0 is not an average, but the actual number),
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Figure 1: Comparative performance on the simulated data from [3] (see text for details).
Relationship between the average value of the statistic and the variability in inter-gene
distance (increases in the percentage of genes missing are directly related to increases in
the variability in inter-gene distance). Shown are the mean and 95% confidence interval
around the mean (based on 500 data sets). In panels (a), (c), (d), higher is better; in panel
(b) lower is better.

10%, 25%, 50% and 65%. To minimize the variability in methods’ comparisons, the
derived data sets analyzed by all methods were the same.

2.2 Results and discussion

Results are shown in Figures 1, 2, 3.

Overall performance: Correct Classification Rate RJaCGH is better than any
of the alternative approaches:

• The difference in performance between RJaCGH and alternative approaches
increases as the variability in spacing between clones increases (i.e., as the
proportion of missing genes increases). These patterns are seen in Figure
1 (a).

• The difference between RJaCGH and alternative approaches, is accen-
tuated in Figures 2 and Figure 3: contrary to other methods, RJaCGH
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does not suffer the same decrease in performance as the noise in the data
increases.

False Discovery Rate The best performers are DNAcopy and CGHseg, and RJaCGH
is the next best; all other methods suffer from much greater False Discovery
Rates (Figure 1, (b)). As the noise in the data increases, however, the difference
between RJaCGH and DNAcopy and CGHseg becomes smaller with RJaCGH
being the method with smallest FDR at the highest noise levels (Figure 3 (b)).
For all practical usages, however, differences between RJaCGH and DNAcopy
and CGHseg in terms of FDR are probably negligible.

Note, however, that the good performance of DNAcopy and CGHseg with
respect to False Discovery Rate is at the expense of a reduced Sensitivity (see
next).

Sensitivity The largest sensitivity is achieved by BIOHMM at small values of noise
in the data and by RJaCGH with higher noise levels (see panel (c) in all Fig-
ures). Over all levels of noise in the data, however, the performance between
RJaCGH and BIOHMM (Figure 1 (c)) is indistinguishable, but clearly superior
to other methods. The good performance of BIOHMM with respect to Sensi-
tivity, however, is achieved at the expense of its high False Discovery Rate and
low Specificity (see below).

Specificity As could be expected from the definition of Specificity and False Dis-
covery Rate, the patterns of Specificity are similar to those commented above
for False Discovery Rate.

In summary, RJaCGH has the largest correct classification. For some specific
statistics, RJaCGH can be second (but very close) to some approaches; these other
approaches, however, perform poorly in the other performance statistics. Overall,
therefore, RJaCGH is the best performing method when considering the four avail-
able statistics.
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Figure 2: Analysis of simulated data: conditioning on variability of inter-gene distance. Analysis of data from Willenbrock and
Fridlyand [3] (see text for details on addition of gaps). For each level of average number of missing genes (0, 10, 25, 50, 65 %) or,
equivalently, for increasing levels of variance in the distance between clones, we compute the mean of the statistic at ten equally spaced
levels of noise in the data (i.e., the 500 data sets have been divided in 10 groups according to their noise, so that the midpoints of each
interval are 0.105, 0.115, 0.125, . . . , 0.185, 0.195). Therefore, each point in the figure corresponds to the mean from about 50 samples.
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Figure 3: Analysis of simulated data: conditioning on sample noise. Analysis of data from Willenbrock and Fridlyand [3] (see text and
Figure 2 for details). The noise (standard deviation) of each sample is split into ten non-overlapping ranges, and each panel shows the
average value of the statistic vs. the proportion of missing genes (i.e., increasing levels of variance in inter-gene distance) for a given
sample noise.
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3 Real data from Snijders et al.

We have also analyzed the well known nine cell lines from Snijders et al. [11] available
from
http://www.nature.com/ng/journal/v29/n3/suppinfo/ng754 S1.html and we have com-
pared the results from our method with the known ploidy, as provided by Snijders
et al.

Figure 4 shows the comparative performance of each of the methods. From the
figure we see that RJaCGH has performance comparable to that of the best method
for each statistic.

As an example of the type of output provided by RJaCGH, Figure 5 shows the
results of one analysis for the complete genome of the cell line gm03563. Panel a)
indicates a large posterior probability of a model with four hidden states; two of the
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Figure 4: Comparative performance on the nine cell lines from Snijders et al. [11]. We
show the value of the performance statistics for each cell line (numbered 1 to 9, which corre-
spond to gm01524, gm01535, gm01750, gm03134, gm03563, gm05296, gm07081, gm13031,
gm13330, respectively). In all these figures, “larger is better” (note we use 1- FDR, not
FDR). Only three values are shown for BIOHMM, as the rest of data lead to crashes in
the program.
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Figure 5: Results of the RJaCGH analysis of gm03563 cell line from Snijders. Results
shown are from four parallel chains; see text for details about other parameters. The lower
panel shows the results from the Bayesian Model Averaging step (see text); black dots
correspond to genes classified as ’normal’ or non-changed, red dots to genes classified as
’gained’ and green dots to genes classified as ’losses’; the lower blue line shows the posterior
probability for every gene of belonging to the predicted state. The vertical alternating white
and grey bars denote the different chromosomes with the chromosome number shown at
bottom.

states of the four-state model, however, are extremely close to each other (panel b)
and, because of their posterior means (panel b) and variances (panel c) we consider
them to represent the same biological state of no change in copy number. The other
two states are well separated, with posterior means clearly negative or positive, so
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we regard them as biological states of loss and gain of copy number. Note that the
component that represents the hidden state of loss is assigned to only two genes
(panel e, green dots), exactly the same two genes whose true state is loss [11]. Panel
d) shows that the probability of remaining on the same state decreases as distance
increases, eventually becoming 0.25(= 1/Number hidden states). Finally, panel e)
shows the results from the Bayesian Model Averaging. This is a particularly clear-cut
model, as the posterior probabilities that each gene belongs to the state with highest
posterior is very high (the lower blue line is > 0.9 for almost all genes).

4 Implementation and analysis

We have implemented RJaCGH using C (for the sweep algorithm) and R [12]. The
code is available from CRAN
(http://cran.r-project.org/src/contrib/Descriptions/RJaCGH.html)
and from the Asterias site (http://www.asterias.info). All analysis and compar-
isons have been done in R; we have used the BioConductor (http://www.bioconductor.
org) packages DNAcopy (for the DNAcopy method) by E. S. Venkatraman and Adam
Olshen, aCGH (for the HMM method and mergeLevels algorithm) by Jane Fridlyand
and Peter Dimitorv, snapCGH (for BioHMM) by Mike L. Smith, John C. Marioni,
Steven McKinney and Natalie P. Thorne, GLAD by O. Huppe, and tilingArray (for
CGHseg with additional modifications to use the original penalization) by W. Huber;
we have also used a version of ACE implemented by O.M.R. in R and C.

5 Additional files: input, output, and code

All the code for the analysis, simulations, and figure preparation, as well as all input
and output files for each method and every run are available from
http://asterias.bioinfo.cnio.es/RJHMM_20061110_1437_smf/AdditionalFiles.

html.
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