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Protocol S2. Supporting Materials and Methods

S2.1 Calculations in the context dependent model

Sequence evolution is usually modeled as a homogeneous continuous-time Markov chain along
the genealogy, with independent sites. Transition probabilities are then computed for one site
and the Markov chain that needs to be considered has a state space of the same size as the
sequence alphabet (here 2). In more detail, the transition matrix Pt associated with an amount
of time t is computed as Pt = eQt where Q is the rate matrix. Exponentiation of the matrix
Qt relies on the eigenvalue decomposition Q = P−1DP where D is diagonal. As long as the
dimension n of the rate matrix (i.e. the dimension of the state space of the Markov chain) is
small, both the eigenvalue decomposition (time-complexity O(n3), to be performed only once for
a given Q) and the computation of Pt are fast (time-complexity O(n3) or O(n) for a particular
term of the matrix, to be performed for each t considered).

To account for context dependent effects using an homogeneous continuous-time Markov
chain model, it is necessary to consider the state space of the |A|l possible sequences (512 as in
our case |A| = 2 and l = 9). In the most general case, working with such a model is intractable
given that each O(n) or O(n3) computation needs to be performed a very large number of time
during the course of the algorithm. However, when all sites are considered identical the time-
complexity of the computations can be decreased considerably by taking advantage of some
symmetries in the evolution models. For instance, the transition probability from a sequence
x with k methylated sites to a sequence y depends on y only through m(x, y), the number of
sites methylated in y but unmethylated in x (0 ≤ m(x, y) ≤ k) and u(x, y) the number of sites
unmethylated in y but methylated in x (0 ≤ u(x, y) ≤ l− k). The same is true when looking at
the transitions probability from any sequence to x. In other words, we can obtain the transition
probabilities by working with the simplified Markov chain that describes transitions between
sequences with different values of u and m in a state space of dimension (k + 1)(l − k + 1) (at
most 30 in our case).

The rate matrix Qk of the simplified Markov chain is easily derived from the rates of methy-
lation (µ+,0, . . . , µ+,8) and demethylation (µ−,1, . . . , µ−,9) for increasing numbers of methylated
sites:

Qk((m,u), (m′, u′)) =
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

uµ+,k−u+m if m′ = m and u′ = u − 1
(k − u)µ−,k−u+m if m′ = m and u′ = u + 1
mµ−,k−u+m if m′ = m − 1 and u′ = u
(l − k − m)µ+,k−u+m if m′ = m + 1 and u′ = u
0 otherwise .

S2.2 Genealogy of cells sampled from the progeny of the same stem cell.

We suppose that the progeny of each stem cell in the crypt, at any given time, is made of all
the cells arising from the last g rounds of cell division. Here we seek to derive a continuous
approximation for the discrete coalescent process corresponding to this scenario, illustrated in
Figure 2.

The probability that two lineages sampled without replacement from the progeny of the
same stem cell coalesce more than k generations ago is

P (T
(2)
2 > k) = P (T2 > k − 1) ×

2g−k+1 − 2

2g−k+1 − 1
,
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so that

P (T
(2)
2 > k) =

(2g − 2k)

(2g − 1)
, 0 ≤ k ≤ g ,

where T
(2)
2 is the waiting time for the coalescent event. As mentioned in the Methods section,

we prefer to rescale time in units of g generations and therefore we work with the random

variable S
(2)
2 = T

(2)
2 /g whose probability distribution function is defined by

P (S
(2)
2 > q) =

(2g − 2gq)

(2g − 1)
, q ∈ (0, 1/g, 2/g, . . . , 1) ,

We approximate the distribution of S
(2)
2 as a random variable taking values in the continuous

interval (0, 1) with probability distribution written P (S
(2)
2 > s) = exp(−Ω(s)), where Ω(s) =

∫ s

0 ω(a)da is the integrated rate function defined as

Ω(s) = − log
(2g − 2gs

2g − 1

)

, 0 ≤ s < 1 .

We obtain ω after differentiating Ω

ω(s) = g log 2 ×
2gs

2g − 2gs
, 0 ≤ s < 1 .

The distribution of the coalescent time between two lineages sampled at time 0 follows the
standard coalescent with constant rate 1 when expressed in terms of u = Ω(s). In this time
scale, the distribution of the coalescent times has a well known generalization when n lineages
are initially sampled1 given by

fn(u(n)
n , . . . , u

(n)
2 ) =
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, 0 ≤ u(n)
n , . . . , u

(n)
2 < +∞

where u
(n)
j stands for the time spent with at least j lineages and with the convention u

(n)
n+1 = 0.

After changing back to the required time-scale, this density may be written:

fn(s(n)
n , . . . , s
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, 0 ≤ s(n)
n , . . . , s

(n)
2 < 1

where s
(n)
j stands for the time spent with at least j lineages and with the convention s

(n)
n+1 = 0.

This choice ensures that for any n ≥ 2 the time to the coalescent event for any pair of initially

sampled lineages has the same distribution as S
(2)
2 .

S2.3 A slightly modified model for the number of stem cells

MCMC moves trying to update the number of stem cells N without updating M have very
low acceptation probability. This is understandable as Mi, the number of stem cells sampled in
crypt i, has to verify Mi ≤ N which implies that when Mi = N for some i (almost always true
if N is small and both the number of crypts K and the number of cell sampled are large) then
moving from N to N − 1 is impossible.

This problem can be overcome by working with a slightly modified model where each crypt
i has its own number of stem cells Ni (N ∈ {(n1, n2, . . . , nK), ni ∈ (1,Nmax)}). The idea is
that the posterior distribution of the parameters in the original model can be deduced from the
posterior of the parameters in the modified model by conditioning on N ∈ {(n, n, . . . , n), n ∈

1Kingman JFC (1982) On the genealogy of large populations. J. Appl. Prob. 19A:27–43.
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(1, Nmax)}. The size of the sample from the original posterior distribution that can be obtained
through filtering of a sample from the modified posterior distribution is proportional to the
posterior probability of

{

N ∈ {(n, n, . . . , n), n ∈ (1,Nmax)}
}

in the modified model and then
can be very small. We found that the prior on N such as

P(N ) ∝

Nmax
∑

n=1

1
(

K
k

)I{|N = n| = k, |N = n + 1| = K − k} ,

where |N = n| denotes the number of elements of N that are equal to n, is a good choice as it
ensures that 1/K of the prior weight is on the parameter space of the original model.

In practice we do not notice any significant differences between inferences in the original
with uniform prior on (1, Nmax) and inferences in the modified model using this prior on N . As
a consequence, the posterior distributions presented here are those obtained for the modified
model and we identify N and (1/K)

∑K
k=1 Ni when it is convenient.

S2.4 MCMC Algorithm

The MCMC algorithm generates a Markovian sample from the joint posterior distribution

N , τ, g, σ, ν, α, ǫ,Λ,Y | X .

Let us recall that N = (N1, . . . , NK) denotes the number of stem cells in each crypts (N has
been replaced by N to improve the algorithm performance, see above); τ is approximately
the average time to the most recent common ancestor of the stem cell population; ν denotes
the sequence evolution rates expressed in terms of number events in time τ ; σ is the hyper-
parameter; ǫ is the probability of error per sequence per site; Λ is the genealogy of the sampled
cells; Y are the methylation patterns at the nodes and leafs of Λ; X is the observed sequences
that can differ from the patterns at the leafs of Y due to sequencing errors.

The MCMC algorithm is made of numerous small moves updating the variables while pre-
serving the target posterior distribution. Most of these moves are Metropolis-Hastings steps
where a new value for the variable is proposed according to a proposal distribution and the
new value is accepted according to a probability that ensures the preservation of the target
distribution. Some of the moves are Gibbs steps where one variable is updated by redrawing it
from its distribution conditionally on all other variables.

Updating N , τ, g, σ, ν, α, ǫ

Two kinds of Metropolis-Hastings moves have been designed to update N . The first move
consists of increasing or decreasing Nk by one in the crypt k. The second move increases or
decreases Nk simultaneously in all the crypts 1 ≤ k ≤ K. The parameters τ, g, σ, ν, α are
updated separately by Metropolis-Hastings moves using a Gaussian proposal with standard
deviation 0.2 times the current value of the parameter. The parameter ǫ is updated using a
Gibbs move as its conditional distribution is known: ǫ | . . . ∼ Beta(1+ |X 6= Y |, 1+ |X = Y |),
where |X 6= Y | denotes the number of CpG sites where X and Y does not match each other.

In the case of the context-dependent sequence evolution model we have an additional set
of parameters corresponding to the boundaries of the range where each couple of methyla-
tion/demethylation rate apply. To update these boundaries we choose one of them at random
and move it to the left or to the right. The Metropolis-Hastings ratio for this move is easy to
compute.

Updating Λ, Y and N

These moves are attempted separately and independently for each crypt. We will describe them
as if we were analyzing a single crypt to avoid useless notation.
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Updating Y . Move (a) updates Yi, in turn for each node i of the genealogy Λ by redrawing
it from its distribution conditionally on all other variables (Gibbs move):

π(Yi = y | . . .) ∝ f(y; yp, tp)f(yl; y, tl)f(yr; y, tr) ,

where the subscript p corresponds to the parent of node j; the subscript l to its left child; the
subscript r to its right child; and f(y;x, t) to probability of the transition from x to y along a
branch of length t.

In a similar way, patterns at the leafs of Λ are updated using the formula:

π(Yi = y | . . .) ∝ f(y; yp, tp)h(x; y) ,

where h(x; y) is the probability of observing the sequence x when the true underlying sequence
is y (h(x; y) = (l− e)1−ǫeǫ where e is the number of sequencing errors and l the number of CpG
sites).

Updating Λ,Y ,N .

The genealogy and patterns at its node are jointly updated using the branch-swapping strat-
egy proposed by Wilson and Balding2 and used in the BATWING program. Briefly, it consists
of choosing a node i and trying to move its parent node somewhere else in the genealogical
tree. The powerful idea of Wilson and Balding is to choose a node j above which to try to
attach the parent according to the distance between the sequences Yi and Yj , thereby making
possible to achieve relatively large moves with a relatively high frequency. In keeping with the
original algorithm, we choose j using a proposal density proportional to 1/(1+d(Yi, Yj)), where
d denotes the Hamming distance. In our version of the branch-swapping move, we update the
sequence of the parent node according to its conditional distribution in the new topology. N is
redrawn from its conditional distribution given the new Λ and the number of stem cells in the
other crypts. The Metropolis-Hastings acceptance ratio is easy to compute.

Another move updates the number of roots of Λ. With equal probabilities we try either
to decrease or to increase the number of roots. To decrease the number of roots we randomly
choose two of them to merge. The time of the new coalescent event added to the genealogy
is chosen uniformly between the time of the last coalescent event and the time of the birth
of the patient. The sequence at the new internal node is drawn according to its conditional
distribution in the new genealogy. To increase the number of roots we try to replace the last
internal node of the genealogy by two root nodes. The Metropolis-Hastings acceptance ratio is
easy to compute.

S2.5 Parameters used to generate simulated data sets

N τ g α ǫ νm(0) νm(1) νm(2) νm(3) νm(4) νm(5) νm(6) νm(7) νm(8) —
— νu(1) νu(2) νu(3) νu(4) νu(5) νu(6) νu(7) νu(8) νu(9)

6 32.2 6.05 0.082 0.001 0.069 0.337 0.360 0.528 0.522 0.530 0.566 0.855 21.534 —
— 0.949 0.785 0.306 0.285 0.286 0.276 0.257 0.251 0.287

24 31.6 7.35 0.018 0.002 0.066 0.369 0.386 0.511 0.509 0.524 0.589 0.875 6.222 —
— 0.868 0.753 0.312 0.280 0.285 0.267 0.262 0.242 0.327

Table S2.5: Parameters used to generate simulated data sets.

2Wilson IJ, Balding DJ (1998) Genealogical inference from microsatellite data. Genetics 150:499-510.
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