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Supplementary Information

Key terms and definitions

• A chromosome mis-segregation segregates chromosomes asymmetrically among daugh-
ter cells, causing an aneuploid state.

• Aneuploidy := a chromosome number that is not a multiple of the haploid complement.
An euploid cell carries a multiple of the same set of chromosomes. Haploids (1 copy
of each chromosome), diploids (2 copies) and polyploids (> 2 copies) are all examples of
euploidy.

• Karyotype := a numeric vector with one entry per chromosome type (e.g. we have
22 types when considering the set of human autosomes). Each entry indicates the copy

number of that type of chromosome. Each karyotype corresponds to a compartment of
a multi-compartment ODE.

• Ploidy := the total number of chromosomes occurring in the nucleus of a cell. Also
referred to as DNA content in the continuous setting.

• Karyotype composition := the relative frequency of all karyotypes in a population at
a given time.

• Set of viable karyotypes := all possible karyotypes associated with non-negative growth
rates. This can either be a single interval (e.g. 22 - 88 chromosomes) or multiple intervals
of karyotype viability interspersed between nonviable regions.

1.1 Relationship between timescale and characteristic amount of
DNA shifted per missegregation

Let Tp be the time it takes for a mitotic cell to segregate its chromosomes among daughter
cells. Given that cells divide at a rate � and that only dividing cells missegregate (at a rate
�), we expect the timescale of missegregations to be proportional to Tp��. We approximate
the shift in DNA content over time as Fickian di↵usion, which gives us Lp, the characteristic
amount of DNA content shifted during a missegregation event, as: Lp ⇠

p
Tp�� [1]. From

here we can approximate the timescale on which missegregations happen as: Tp ⇠ L2
p/(��).

1.2 Numerical methods for calculating the critical curve

Critical curves are derived by leveraging the fact that the critical turnover rate for a given �
is when the rate of missegregation induced cell death equals the growth rate (�� µ). Let J
be the Jacobian defined in (10). The system reaches a steady state when niJ = 0. Nontrivial
solutions can be found by choosing functions for the mis-segregation rate � and death rate
µ (which parameterise the matrix J) such that the dominant eigenvalue is zero. A robust
method for determining pairs of values (B,M) on the critical curve (which can cope with
heterogeneous functions for �, µ), is to: 1) choose an input value B for the function �(i, B),
then 2) find the value of M parameterizing µ(i,M) such that the dominant eigenvalue of J
is equal to zero. The eigenvector corresponding to this eigenvalue is the steady state of the
system. Although this method is robust, it requires multiple generations of the matrix J
with di↵erent values of M and so can become slow when J is a large matrix. A considerable
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time saving can be achieved when death rate does not depend on copy number state, i.e.
µ = M . In that case, J can be expressed in terms of the adjusted matrix J⇤:

J = J⇤ + µI, (16)

where J⇤ represents the transition matrix with µ = 0 and I is the identity matrix. It
can be shown that the eigenvectors of J are identical to those of J⇤, therefore the steady
state population distribution (i.e. the karyotype composition) does not depend on the death
rate µ and is given by the dominant eigenvector of J⇤. Denoting this eigenvector n̄i, after
normalising n̄i such that the entries sum to one,

P
i n̄iJ⇤ gives the net growth rate of the cell

population when µ = 0 and the population distribution has reached steady state (although
net population growth still occurs when µ = 0). Therefore, the true steady state (and
therefore the critical curve) is found by choosing the value of µ which exactly negates this
growth, i.e: µ =

P
i n̄iJ⇤. We note that if death rates are heterogeneous then J⇤ is no longer

independent of the death rate µ, i.e. the approach relies on the assumption of homogeneous
rates.

Both of the above approaches work when a single chromosome type has a finite viable
copy number interval as well as when multiple chromosomes have finite intervals (i.e. ni

becomes n~i). However both become infeasible when we have k � 1 chromosome types, each
with multiple copies, as the matrix J becomes too large. However the critical curve can
still be generated by extrapolating from the single chromosome case. Summing over the
rows of the matrix qij (eq. (7)) gives a probability vector q⇤i , which contains the probability
that a daughter of a cell with i chromosome copies receives a viable number of copies.
The overall probability that a daughter cell from the steady state population receives an
unviable number of copies for a single chromosome type is therefore: qd = 1 � q⇤i · n̄i. The
probability that a daughter receives viable copy numbers for all k chromosome types is:
qka = (1� qd)k = (q⇤i · n̄i)k. The rate of change of the alive cell population is given by:

dna

dt
= �na(2q

k
a � 1)� µna, (17)

,
where na is the total number of alive cells. Setting to zero, we have µ = 2qa � 1.

1.3 MIE is impossible for infinite compartments - continuum ar-
gument

To appeal to the continuum model we have to assume that only small changes in DNA
content (small jumps) happen during a given cell division. Under this assumption equation
(9) can be expanded as:

dni

dt
= �i+1�i+1ni+1 � 2�i�ini + �i�1�i�1ni�1 + (�i � µi)ni. (18)

Defining p = i/K, and �p = 1/K, for K ! 1 we have:

�i+1�i+1ni+1 � 2�i�ini + �i�1�i�1ni�1 !
1

K2

@2

@p2
(��n). (19)

21



This leads to:
@n

@t
= (�� µ)n+

1

K2

@2

@p2
(��n), (20)

where p 2 (0, 1) and n(0) = n(1) = 0. We make use of the Ansatz, n = e↵tU(p), which
results in the eigenvalue problem:

↵U =
1

K2
(��U)00 + (�� µ)U. (21)

For simplicity, we define q = 1
K2�� and convert to Sturm-Liouville form:

↵U = qU 00 + 2q0U 0 + (�� µ+ q00)U

↵qU = (q2U 0)0 + q(�� µ+ q00)U.

Multiplying by U and integrating over p, we obtain an equation for ↵ (the Rayleigh Quotient):

↵ =

R 1

0 �q2(U 0)2 + q(�� µ+ q00)U2 dp
R 1

0 qU2 dp
=

R 1

0 �
(��)2

K2 (U 0)2 + ��
h
�� µ+ (��)00

K2

i
U2 dp

R 1

0 ��U
2 dp

. (22)

For K ! 1 we may neglect the terms with K�2 and obtain

↵ =

R 1

0 ��(�� µ)U2 dp
R 1

0 ��U
2 dp

. (23)

Provided that r = � � µ > 0 for all p we define m = inf(��(� � µ)) and P = sup(��), it
follows that

↵ �
m

P
> 0.

Finally, we note that the Rayleigh quotient satisfies ↵min  ↵  ↵max for all amendable test
functions U , where ↵min,↵max are the smallest and largest eigenvalues, respectively. Hence,
↵max > 0 and so MIE is impossible.

Note that the proof did not rely on the whole integral having r > 0. Suppose that we
have an almost everywhere di↵erentiable function U that is 0 on [0, 1]\E, with E ⇢ [0, 1]
and m,P defined as above. Then (23) becomes:

↵ =

R
E ��(�� µ)U2 dpR

E ��U
2 dp

�
m

P
> 0, (24)

provided that |E| > 0.
On a final note, this may seem to imply that we have shown that a finite number of

compartments in the small jump case can’t have MIE, but this would be false. We must
take a closer look at the passage to equilibrium. For simplicity suppose the viable karyotype
interval is at the beginning i = 1, . . . , f(K) where r > 0. Defining p = i/K as before, note
that the viable interval length is on the order of f(K)/K. For the measure of this interval to
remain finite, we require that f(K) ! cK for K ! 1 for some 0 < c < 1 to rule out MIE.
The viable interval length must grow at the same order as the number of viable intervals
grows, in order to be able to rule out MIE using this method.
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1.4 Ruling out MIE

Here, we establish su�cient conditions for MIE to not occur. These are based on Gershgorin’s
circle (GC) theorem which states that for matrix A with elements aij, the eigenvalues  
satisfy:

| � aii| 
X

j 6=i

|aij| = Ri. (25)

Put di↵erently, every eigenvalue of A lies within at least one of the discs with center aii and
radius Ri.

Since MIE can be evaded if the maximum eigenvalue exceeds 0, a su�cient condition is
that none of Gershgorin’s circle contain a part of the negative reals. That is aii �Ri > 0 for
all i.

Using GC, a su�cient condition to avoid MIE is given by:

� < �c =
1

4

⇣
1�

µ

�

⌘
. (26)

Of course, we know that for large K, no missegregation rate will lead to MIE; this just
provides a su�cient condition.

If �, � and µ vary with ploidy i, we can still obtain a su�cient condition to avoid MIE
given by:

�i(1� 3�i)� µi � �i+1�i+1 > 0, for all i. (27)

If � is homogeneous, then this reduces to

� < �c =
1

3 + �i+1/�i

✓
1�

µi

�i

◆
, for all i. (28)

The general problem (i.e. any arbitrary relation between �, � and µ) can be handled
analogously, but conclusions can only be made for specific forms of q. We require both
(11)-(12). As both of these need to be positive, we can find the minimum of these, which
will provide su�cient condition to escape MIE.

Let us consider a more complicated example to show the power of this method. Suppose
that �, µ are homogeneous, but that qij = q(i ! j) obeys the following relationship

q(i ! i± h) = i�
h, h = 0, 1, . . . , i. (29)

This q can be thought of as one that favors small jumps but all jumps are permitted. Let
us suppose that there is no limit on the number of compartments, then:

1 =
iX

h=0

q(i ! i+ h) = i

iX

h=0

�h =
i(1� �i+1)

1� �
.

This implies the relation for i:

i =
1� �

1� �i+1
. (30)
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We now look at the sum in (11) (note the symmetry q(i ! i+ h) = q(i ! i� h)),

2i

iX

h=1

�h =
2�(1� �i)

1� �i+1
(31)

The sum in (12) is trickier since in this case we are looking at the possibilities q(i+ h ! i)
and it is clear that q(i + h ! i) 6= q(i � h ! i) (because any given ploidy state i is more
likely to emerge from missegregations in a higher ploidy cell than in a lower ploidy cell). We
look at the first part of the sum first

1X

h=1

q(i+ h ! i) =
1X

h=1

i+h�
h = (1� �)

1X

h=1

�h

1� �i+h+1
= � +O(�3+i),

valid when � ⌧ 1. The sum from the other direction is nonzero only if h � di/2e:

i�1X

h=di/2e

q(i� h ! i) =
i�1X

h=di/2e

i�h�
h = (1� �)

i�1X

h=di/2e

�h

1� �i�h+1
= �di/2e

� �i +O(�i+1).

Therefore, the sum term in (12) (
P

j 6=k �jqjk) becomes:

� + �di/2e
� �i +O(�1+i). (32)

The bigger sum sets the threshold and is maximal for large i. With this choice of q, it is
(11) which is the dominant condition. Thus, a su�cient condition to escape MIE is given
by:

� < �c =
1

4

⇣
1�

µ

�

⌘
. (33)

The appearance of this relation potentially suggests a fundamental limit on a kernel of this
type. Indeed, it is not hard to show that for general q with qii = 1� �i, (11) yields

�i <
1

4

✓
1�

µi

�i

◆
, for all i.

Since both (11) and (12) must be met, the above condition is the upper bound on the �i’s
required to evade MIE.

1.5 Extensions to model whole-genome doubling and micronuclei
formation

Though WGDs are technically feasible in the model (through an i parent giving birth to 2i
and 0 ploidy o↵spring), this ignores the biological mechanisms for how WGD events may
occur. There are two mechanisms for WGD [2,3] – endoreplication (i.e. completely skipping
mitosis) and cytokinesis failure which often generates binucleated whole genome doubled
cells. Chromosomes in the two nuclei can then merge the subsequent mitosis after nuclear
envelope breakdown. We can modify equation (9) to account for WGD by introducing terms

dni

dt
=

X

j

�jnjqji � �ini(1� qii)� µini � ✓ini + ✓i/2ni/2,
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where ✓i/2 = 0 if i/2 is not an integer.
Mounting evidence suggests that a cell which mis-segregates many chromosomes has

a higher risk to die than a cell mis-segregating only one chromosome [4, 5]. Our current
model structure however does not distinguish between these scenarios. To account for this
intolerance, we can amend the inflow term by introducing a karyotype transition coe�cient
�ij. One possible form � = (1+|i�j|)↵ with ↵ < 0, where only relative distance is important.
Other forms that take the parental state into account could also be considered. Combining
this with the above, leads to

dni

dt
=

X

j

�ji�jnjqji � �ini(1� qii)� µini � ✓ini + ✓i/2ni/2.

The only requirement is that �ij must fall o↵ with increasing distance between states.
Yet another assumption, which could be eventually relaxed is the ploidy conservation in

equation (3). The errors during mitosis could lead to the formation of micronuclei which are
not directly involved in further downwind mitosis [6–10]. This amounts to replacing equation

(3) with 2ik � j(1)k + j(2)k for all k.
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Table A: In vivo tumor dynamics across nine cancer types. Birth rates taken from [11] and growth
rates taken from multiple sources (cited in third column). The death rate is inferred. Many of the birth rates
are comparable, but the net growth rates vary over orders of magnitude, which implies very di↵erent death
rates. Last column shows percent contribution of respective normal human cell types to a total daily mass
turnover of 80 g (taken from [12]) – these are correlated to both birth and death rates reported in tumors
(Pearson r � 0.923;P < 0.026).

Cancer type birth rate (�) [11] growth rate (r) death rate (µ = �� r) normal
turnover (%)

Head/Neck 0.192 (0.015 - 1.667) 0.007 (0.003 - 0.033) [13] 0.185 (0 - 1.664) NA

Esophageal 0.207 (0.018 - 0.625) 0.154 (0.035 - 0.347) [14] 0.053 (0 - 0.59) NA

Colorectal 0.239 (0.019 - 1.111) 0.003 (0.0003 - 0.038) [15] 0.236 (0 - 1.111) 41 [12]

Rectal 0.303 (0.179 - 0.417) 0.005 (0.0004 - 0.013) [16] 0.298 (0.166 - 0.416) 41 [12]

Breast 0.122 (0.021 - 0.556) 0.003 (0.0003 - 0.016) [17] 0.119 (0.005 - 0.555) NA

Cervix 0.25 (0.159 - 0.323) 0.002 (0.0004 - 0.012) [18] 0.248 (0.147 - 0.322) NA

Melanoma 0.139 (0.024 - 0.286) 0.007 (0.002 - 0.014) [19] 0.132 (0.01 - 0.284) 4 [12]

SC Lung 0.122 (0.036 - 0.667) 0.008 (0.005 - 0.013) [20] 0.114 (0.023 - 0.662) 0.5 [12]

D-LBCL 0.063 (0.043 - 0.4) 0.023 (0.01 - 0.5) [21] 0.04 (0 - 0.39) 1.7 [12]
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Fig A: Predicted changes in missegregation rate during tumor evolution. (A-B) Critical curves
displayed as a function of the population average missegregation rate (y-axis) and departure from homeostasis
(1 - turnover rate; x-axis). � := 1 in all calculations, i.e. cells divide once per day. Copy number ranges
from [1, 8] and death rate is independent of copy number (µ(i) := M), whereas missegregation is either
also independent (A, �(i) := ⇥1) or dependent on copy number (B, �(i) := ⇥2 � 1.4i). (C-D) Population
average missegregation and turnover rates over time are shown for three parameter combinations ✓ 2 a, b, c
highlighted in (A,B) respectively. (E-F) Evolution of karyotype composition for each of the three parameter
combinations is also shown.
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Fig B: Numerical simulations confirm theoretical MIE curves. Numerical simulations confirm that
the theoretical critical curves shown in Fig 2A,B separate exponential growth from population extinction.
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Fig C: Heterogeneous missegregation and death rates can render MIE impossible. Kernels
used to model intra-tumor heterogeneity in missegregation- (A) and turnover rates (B). (C) Critical curves
calculated assuming homogeneous or heterogeneous missegregation and turnover rates are compared with
each other. Functions used to model heterogeneous rates are displayed as row and column labels and have
ploidy (i) as parameter. For each of these functions, we calculated the critical missegregation rate parameter
(B) and death rate parameter (M). Note that for M = 1, the turnover rate function in the first column
becomes the constant rate from the second column. MIE requires M ! 1, explaining why critical curves
look identical in both columns. (D) We also simulated the ODE assuming combinations of the functional
forms of missegregation and turnover rates shown in C. Shown here is the number of days needed to reach
steady state karyotype composition as a function of population average missegregation rate.
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Fig D: Risk of MIE as a function of the number of chromosome types with finite viable

copy number intervals. (A-C) Critical curves were obtained by finding (�, µ
� ) for which the maximum

eigenvalues of the Jacobian (eq. (10)) is 0. We assume existence of up to m = 22 critical chromosomes,
where intervals of viable karyotypes for each chromosome type x 2 1..m are defined by kx  ix  Kx. We
calculate the critical curves assuming cell viability is restricted by all 22 of the chromosomes or by only a
subset of them (color code). Hereby we assume each chromosome must have at least one and no more than
three (A), five (B) or eight copies respectively (C).
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Fig E: Karyotype profiles inferred for two metastatic TNBC samples . (A) Copy number profiles
from two of the metastatic samples from patient S4 TNBC1 (marked red in Fig 3B,D) were clustered into
subpopulations of cells with unique karyotypes (left color code). The two metastatic samples originate from
the same patient and have significant similarities in their karyotype profiles, even though they were called
independently from each other. (B) Inferred mis-segregation rates per cell division per chromosome for each
subpopulation in (A).
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Fig F: Variability in turnover, missegregation and ploidy across coexisting subpopulations in

14 tumors. Every column represents a subpopulation of cells with unique karyotype. Subpopulations from
the same tumor are grouped together. Their ploidy (first row), departure from homeostasis (second row)
and log2-transformed % missegregation rate (third row) are shown.
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Fig G: Relationship between karyotype and missegregation rates. Mis-segregation rates per chro-
mosome (y-axis) vary with the copy number (x-axis) of specific chromosomes (A-C) and with ploidy (i.e.
copy numbers of all chromosomes in aggregate; D).
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Fig H: E↵ect of normalization and scaling for integration of scRNA-seq datasets. (A-C) UMAP
plots using the normalized and scaled data, with the cells labeled by (A) sample name, (B) cancer type of the
patients and (C) cell types. Tumor cells cluster by sample origin, and tumor cells from similar cancer types
are closer to each other. The PBMC sample of the MCC patient clusters with other normal cells, instead
of with the tumor cells from the same patient. Normal cells cluster mostly by cell type. (D-F) Analogous
plots to (A-C), but generated using non-normalized data. Generally the cells are more clustered by study,
and the tumor cells from di↵erent samples are less distinguished, emphasizing the need for normalization
and scaling.
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Fig I: Mis-segregation rates inferred from scRNA-seq derived gene signatures. Distribution of
median mis-segregation rate across all sequenced G1 cells of a given sample are grouped by disease stage
(left) or site (right). PBMC:= peripheral blood mononuclear cells.
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Fig J: Classification of aneuploid chromosomes with scRNA-Seq derived bias profiles. Minimum
deviation from integer copy numbers (y-axis) guides the choice of x (highlighted red). The more to the right
the minimum, the more chromosomes are assumed to be diploid. Shown are the bias profiles for 15 scRNA-
seq samples, sorted by global minimum. Samples from late-stage tumors (stage IV) have by trend more
non-diploid chromosome arms and their global minimum is higher. Range of x-axis varies because only
chromosomes that express a su�cient number of genes in both tumor and normal cells were considered.
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