
S1 Appendix. Blackbox Variational Inference

We explain the derivation for Blackbox Variational Inference (BBVI, [1], [2]). In the
following discussion, we use x to refer to observed data (i.e. regional infection statistics),
and z to refer to the set of all latent variables (such as the initial community exposure
rates ρ1:C and the exposure probabilities βE1:tN , β

I
1:tN ). We use Stochastic Variational

Inference (SVI) to approximate the intractable posterior p(z|x) by optimizing the
parameters of a variational distribution q(z;φ) (also denoted qφ) from which we are able
to directly draw samples.

ELBO Objective. A common approach to optimizing the variational distribution is
to find parameters φ∗ that minimize the exclusive Kullback-Leibler (KL) divergence
between the variational approximation and the posterior:
φ∗ = argminφKL(qφ(z)‖p(z | x)),

KL(qφ||p) = Ez∼qφ
[
log

qφ(z)

p(z|x)

]
(1)

= Ez∼qφ
[
log

qφ(z)

p(x, z)
+ log p(x)

]
(2)

= Ez∼qφ
[
log

qφ(z)

p(x, z)

]
+ log p(x). (3)

Minimizing this exclusive KL divergence is equivalent to maximizing a lower bound on
the log marginal likelihood of the data. Since the marginal likelihood p(x) is also
referred to as the “evidence”, this bound is called the Evidence Lower BOund (ELBO),

Lφ = Ez∼qφ
[
log

p(x, z)

qφ(z)

]
︸ ︷︷ ︸

ELBO

= log p(x)−KL(qφ(z)||p(z|x))︸ ︷︷ ︸
≥0

≤ log p(x)︸ ︷︷ ︸
log evidence

. (4)

Score Function ELBO Gradient. Variational Autoencoders [3, 4] and related
methods optimize the ELBO by computing reparametrized gradient estimates, which
require the generative model p(x, z) to be differentiable with respect to the latent
variables z. These reparametrized gradient estimators have the advantage of low
variance (meaning that relatively little sampling and computation is required per
gradient step), but impose limits on the generative models being studied. Specifically,
models that incorporate discrete variables and control flow will not be differentiable,
and it may be infeasible or undesirable to find a continuous approximation to make such
a model differentiable. We therefore choose to maximize the ELBO using a so-called
“score-function” gradient estimator that does not require reparameterization. This
approach is generally referred to as Blackbox Variational Inference (BBVI) [1, 2] We
repeat the derivation of this gradient estimator here for convenience,
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∇φLφ = ∇φEz∼qφ
[
log

p(x, z)

qφ(z)

]
(5)

=

∫
dz ∇φ

(
qφ(z) log

p(x, z)

qφ(z)

)
(6)

=

∫
dz ∇φqφ(z) log

p(x, z)

qφ(z)
+ qφ(z)∇φ log

p(x, z)

qφ(z)
(7)

=

∫
dz qφ(z) log

p(x, z)

qφ(z)
∇φ log qφ(z) + qφ(z)∇φ log

p(x, z)

qφ(z)
(8)

=

∫
dz qφ(z) log

p(x, z)

qφ(z)
∇φ log qφ(z)− qφ(z)∇φ log qφ(z) (9)

= Ez∼qφ
[(

log
p(x, z)

qφ(z)
− 1

)
∇φ log qφ(z)

]
(10)

= Ez∼qφ
[(

log
p(x, z)

qφ(z)

)
∇φ log qφ(z)

]
− Ez∼qφ [∇φ log qφ(z)]︸ ︷︷ ︸

=0

(11)

≈ 1

K

K∑
k=1

(
log

p(x, zk)

qφ(zk)

)
∇φ log qφ(zk), zk ∼ qφ(z). (12)

The above gradient estimator does not require the generative model to be differentiable;
we only need to sample from the variational distribution and evaluate both the
generative model and variational models pointwise. While score function gradient
estimators are known to have higher variance and require smaller step sizes than other
approaches, they are unbiased estimates of the gradient, and hence the corresponding
stochastic gradient descent updates will converge under the usual Robbins and Monro
conditions for stochastic approximation algorithms [5].

To reduce the variance of this estimator various techniques have been proposed,
including the introduction of control variates [6, 7, 8, 9], which aim to reduces the
variance of the estimator while not changing the expectation of the gradient estimator.
A common choice is to use a constant baseline b, which can easily be shown to leave the
expectation above invariant,

∇φLφ = Ez∼qφ
[(

log
p(x, z)

qφ(z)

)
∇φ log qφ(z)

]
− bEz∼qφ [∇φ log qφ(z)]︸ ︷︷ ︸

=0

(13)

≈ 1

K

K∑
k=1

(
log

p(x, zk)

qφ(zk)
− b
)
∇φ log qφ(zk), zk ∼ qφ(z). (14)

Notably, an optimal baseline, in terms of the variance of the estimator, can be derived
analytically, but requires estimating additional covariance terms. Hence, in practice, the
expected log-weight b can simply be estimated as a sample average b̂,

b = Ez∼qφ
[
log

p(x, z)

qφ(z)

]
≈ b̂ = 1

K

K∑
k=1

log
p(x, zk)

qφ(zk)
, zk ∼ qφ(z). (15)

This results in a baseline which is computationally efficient and easy to implement.
While it is not guaranteed to reduce the variance and introduces a small bias for finite
sample sizes, it is a standard choice and tends to works well in practice (see [10] for a
review).
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