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Fig A. The data of Méhes et al. [1] fall into the transitory regime of the cellular
automaton. This is shown exemplary for the segregation of PFK with EPC. The
simulation with the same parameters as in Fig 1, with time scale of migration
τPFK-EPC ≈ 4.2 min, cell type ratio NPFK/NEPC = 41.2/58.8, adhesion parameters
(βPFK-PFK, βEPC-PFK, βEPC-EPC) = (−8.06,−6.56,−0.06), and 1402 cells is run for an
additional order of magnitude in time such that the segregation indices drop down to
γ ≈ 0.05, which is much smaller than the smallest indices γ ≈ 0.1 in Fig 1. Within the
given time interval of the experiments (gray box), the cellular automaton shows
ambiguous scaling behaviors. The segregation decays logarithmically at the beginning
(γi ∼ 0.58 log(t), black dashed line), followed by an algebraic decay with exponent of
1/4 (gray dash-dotted line) in the transitory regime, and finally by a algebraic decay
with exponent 1/3 (black dotted line) at smaller segregation indices γEPC < 0.15, which
could be considered as the asymptotic regime.

Cahn-Hilliard Navier-Stokes

The Cahn-Hilliard Navier-Stokes model accurately describes the evolution of two
immiscible fluids under flow and diffusion [2, 3]. The model is also used as a typical
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Fig B. The cluster size distribution ρ in the cellular automaton displays different
characteristics for the early and the later regime. The reverse cumulative cluster size
distributions are shown at four points of segregation. Note that for the early regime,
t = 1min and t = 55min, the reverse cumulative cluster size distribution ρ follows an
exponential decay exp(−k ·A). For the later regime, t = 800min and t = 1500min, the
cluster size distribution displays an algebraic decay with exponent ≈ 1.

choice for simulating fluid segregation [4–7]. This model is known for producing an
algebraic scaling with the exponent of 1/3 for segregation processes with small length
scale [8, 9]. For larger length scales, an exponent of 2/3 can be observed [9]. The
complete model is given by the following set of differential equations:

∂tΦ + u · ∇Φ = D∆µ,

µ = −ε2∆Φ + Φ3 − Φ,

ρ(∂tu + (u · ∇)u) +∇p = ∇ · (η(∇u +∇uT )) + σ̃ε−1µ∇Φ,

∇ · u = 0.

(S1)

At small length scales, predefined by the size of the biological cells, the fourth order
diffusion in the Cahn-Hilliard equations dominates, such that the influence of flow can
be neglected and Eq. (S1) simplifies to:

∂tΦ = D∆µ,

µ = −ε2∆Φ + Φ3 − Φ.
(S2)

These equations are defined for a domain Ω = [0, Lx]× [0, Ly] where Lx and Ly denotes
the maximal size of the domain. We define a phase Φ : Ω→ [−1, 1] on this domain,
where Φ ≈ 1 denotes the first fluid, like water, and Φ ≈ −1 denotes the second fluid,
like oil. Values of |Φ| < Φ0 are defined as interface area, e.g. Φ0 = 0.9. The width of the
interface area is proportional to the parameter ε:

δ = arctanh(Φ0)
√

2ε, (S3)

see Fig C in S1 Text below.
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Fig C. Schematic representation of the relationship between Φ and δ and their
correlation to the interface area.

The parameter D is the mobility constant and influences the time scale of the

diffusion process, which is set by τ ∼ ε2

D . With the phase Φ and the parameter ε the
chemical potential µ(Φ, ε) can be calculated. Each fluid has its own typical parameters
like viscosity ηΦ=−1 and ηΦ=1

and density ρΦ=−1 and ρΦ=1
. By linear interpolation of

the viscosity and density pairs, the functions η(Φ) and ρ(Φ) can be calculated.
Dependent on the types of fluids there is a surface tension σ, which enters the
Navier-Stokes equations after a rescaling as σ̃ := 3

2
√

2
[2, 3].

The implementation of this model follows a special pressure projection scheme with
incomplete pressure iterations and an explicit Euler approach described in the paper of
Adam et al. [10].

The interface length I for this model is approximated by the Cahn-Hilliard surface
energy,

I ≈ 3

2
√

2

∫
Ω

1

ε
W (Φ) +

ε

2
|∇Φ2|, (S4)

W (Φ) =
1

4
(1− Φ2)2. (S5)

At the start of a simulation, the phase Φ is set randomly in between 0 and 1
following a uniform distribution for each grid point. Then an initial settling process
takes place, where no clear phases are observed, since all values of |Φ| are significantly
smaller than 1. In this time span, the measured interface length with Eq. (S4) is
irrelevant for our purpose, since there are no clear phases which segregate. This effect is
displayed in Panels A-C in the Fig E in S1 Text. If Eq. (S4) yields a plateau over some
time, the settling process ceases, two well-mixed phases have established, and the CH
behavior can be interpreted as segregation process. Note, that one can also observe a
slight local increase of the quantity I in Eq. (S4) instead of a plateau.

PLOS 3/14



Mapping of the cellular automaton model and the
Cahn-Hilliard model

We developed a mapping process, to equally start a simulation of the cellular automaton
model and the Cahn-Hilliard model and to compare their segregation behaviors.
Therefore a match of the time or length scale between both models is needed. Since the
cellular automaton initially always segregates logarithmically and the Cahn-Hilliard
model algebraically, the time scale can never be the same. However, the length scale can
be matched. The length scale in the Cahn-Hilliard model is set by the parameter for the
width of the interface area ε. Since the interface area in the cellular automaton is sharp,
we define an equally wide transition to be from the middle of one cell Φ ≈ −0.9 to the
middle of a neighboring heterotypic cell Φ ≈ 0.9. The length of a side 4x of one cell in
the cellular automaton can be calculated by the square root of the average of the
specific cell areas A = (A0 +A1)/2 ≈ 350µm2. The transition area in the cellular
automaton refers to 2δ, see Eq. (S3), and is equal to one cell side length 4x ≈

√
350µm,

see Fig D in S1 Text.

0 = 0.9 0 = 0.9= 0

x

x

Fig D. Visualization of the mapping of the transition area between the cellular
automaton model and the Cahn-Hilliard model. Each square represents a cell in the
cellular automaton, where red denotes i = 0 and blue i = 1 for i ∈W . The length of
one side is defined as 4x and can be calculated by the square root of the specific cell
type area A0, A1. We define the middle of each cell to be equally to each phase
Φ0 = 0.9,−0.9 of the Cahn-Hilliard model. Therefore can the absolute width of the
transition area δ be calculated and ε can be determined.

Further, the cell type ratio of the cellular automaton can be directly integrated into
the Cahn-Hilliard model, by initializing the simulation with an equal phase ratio. The
domain size Lx = Ly can be obtained by the number of cells per dimension multiplied
with the average size of a cell Nδ = N

√
350µm. Only the mobility constant D needs to

be fitted. Since the interface width ε is set, the time scales are only influenced by D.
Therefore, if D is doubled, the time scale is halved. If the length scales are matched, the
initial interface length I will be equal in both models, if both start from a random field.
The comparison of both models can be seen in Fig E in S1 Text.

Two point correlation method

The two point correlation method is commonly used to measure the average cluster
diameter of cells [1, 11]. Our implementation follows
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Fig E. The cellular automaton and the Cahn-Hilliard model after an initial settling
process start at the same interface length. The simulation of the cellular automaton is
started with a random cell mixture, adhesion parameter β = (−1.56,−3.06,−1.56)T ,
time scale of migration τ = 1s, 1002 cells, and a cell type ratio of 50/50. The
Cahn-Hilliard simulation is started from a random, uniformly distributed field with a
mobility constant D = 0.24µm2/s. Note that the Cahn-Hilliard model has always an
initial settling process, where the phases get formed, see Panels A and B, concluded by
a plateau phase for the interface length where two well-mixed phases can be distinguish,
see Panel C. Therefore, the interface length at point C of the Cahn-Hilliards model is
matched with the initial interface length in the cellular automaton.

C(r, t) =

∫ 2π

0

C(r, t)dθ

C(r, t) = 〈Φ(r0, t)Φ(r0 + r, t)〉r0 − 〈Φ(r0, t)〉2r0

(S6)

where the phase Φ(r, t) is 1 if the first cell type is present at r and −1 if the other is
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present, and 〈.〉r0 denotes the average over all grid points r0. The average radius of a
cluster is defined by the smallest radius at which the correlation becomes zero
C(r, t) = 0. Two examples of the correlation function can be seen in Fig J in S1 Text.

Video analysis

Since the details of the video analysis of Méhes et al. [1] are not fully available, we
reanalysed the video S5 documenting the segregation of PFK and EPC, see Fig 3 center
panels. Through the depicted scale, we identified that 100µm corresponds to 37 pixel.
Since the average size of PFK and EPC cells equals ∼ 350µm2, a square with a edge
length of

√
350µm ≈ 7 pixel yields the same area. Further, we divided each frame in

boxes of 7 by 7 pixels and assigned a cell type to each box. To assign the cell type to
each box, we sum the red (PFK) and green (EPC) color channel of each pixels RGB
value for each box. We found, that favoring EPC cells in the interpretation of the
images by multiplying the red (PFK) sum value with 77% and classifying the entire box
as red cell type (PFK) only if this reduced value is greater than the non-reduced green
(EPC) sum value leads to stable cell type ratios over time, see Fig G in S1 Text. In
contrast, if both pixel color values were treated equally, then too many boxes would be
assigned to red (PFK) as Figs F and G in S1 Text highlight.

We further find, in addition to the 77% rule, that single boxes, which are surrounded
by the opposite type, should be removed, to gather a representative grid in regards to
the original video. Without the removal of single boxes, we find a biological incorrect
grid representation of the original experiment, as, especially in the later stages, single
boxes of EPC (green) can be seen in the larger clusters of PFK (red), which is not the
case for the video, see Panels B and H in Fig G in S1 Text. It follows, that with the
removal of single 72 pixels boxes, the minimal cluster size for the experiment equals 2
cells. With these technical adjustments, we are able to reproduce the segregation indices
and cell type ratios reported by Méhes et al. [1], see Figs H and G in S1 Text.

Note, that the time in the video is very coarsely labeled, as it is limited to full hours.
Since some hours included more frames than others, we decided to linearly interpolate
the time for each frame. For this, we used the first frame with 1h labeled and the first
frame with 16h labeled, which is the latest full hour time stamp. This approximation
together with the limited resolution of the published video and the cutoff from the
original microscopy images, this explains the small discrepancies between our data and
the segregation indices reported in Méhes et al. [1].

Cluster sizes

We compute the distribution ρ of cluster sizes for the models and the experiment, see
Fig 4 and B in S1 Text. Since the cellular automaton and the video analysis of the
experiment already yield a grid for each time point with assigned cell types, only the
output of the Cahn-Hilliard model needs to be converted. Since the total area of
simulation for the cellular automaton and the Cahn-Hilliard model are equal, due to our
developed mapping, we project the Cahn-Hilliard grid to the grid used by the cellular
automaton. Each set of grid points of a cluster has the same type and is connected to
every other grid point in this set through a sequence of von-Neumann neighborhoods
within the cluster. After identifying each cluster, we count the number of grid points
contained in each cluster and compute the corresponding area.

Pseuodo algorithm for the cellular automaton

In order to simulate the cellular automaton in an effective way, we implemented a
version with continuous time by applying the idea of the Gillespie-algorithm to the
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Fig F. Illustration of the color calibration method used in the video analysis. The first
row shows a frame from the experiment PFK with EPC at the time t = 21 min. The
second row shows a frame at the time t = 950 min, of the same experiment. A and B
display the original frame of the video S5 of Méhes et al. [1]. C and D show the result of
the video analysis with the factor 77% for the red channel and when single boxes in
opposite-type environment are removed. E and F show the result when the color values
per box are treated equally, which corresponds to a factor of 100% for the red channel.
G and H show the effect when individual boxes in opposite-type environments are not
removed but a factor of 77% for the red channel is used. Comparison of the second and
third column justify that the red (PFK) pixel color sum value for each box should be
multiplied by 77% and than compared to the green (EPC) pixel color sum value.
Comparison of the second and fourth column with the first one justify the removal of
single boxes in opposite-type environment.

cellular automaton, instead of using the usual Metropolis algorithm. This improved the
performance of our simulations drastically, in comparison to a simple algorithm with
discrete time steps and made the calibration to the experiments feasible. The pseudo
algorithm used for the cellular automaton reads as follows:

1. Initialise the lattice.

2. Choose random one heterogeneous transition (x,y ∈ S, |x− y| = ∆x ∧ ξ 6= ξx,y).
Transitions with a higher rate r(x,y), will be chosen with a linear higher
probability P (ξ → ξx,y).

3. The two cells of the selected transition will swap there position on the lattice.

4. ∆tswap is added to the time.

5. If an end condition is reached, stop here.

6. Else, return to step 2.
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Fig G. Illustration of the color calibration method used in the video analysis. The
dotted magenta line shows the cell type ratio reported by Méhes et al. [1]. The solid
orange line represents the cell type ratio, if the pixel color sum for red (PFK) and green
(EPC) is treated equally. The solid blue line displays the cell type ratio if the red (PFK)
pixel color sum value for each box is multiplied by 77% and than compared to the green
(EPC) pixel color sum value. If both colors are treated equally (orange line), the cell
type ratio varies over time, contradicting the fact that cell numbers in the experiment
were kept constant. This supports the use of the 77% factor for the red channel.
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Fig H. The segregation indices computed from our video analysis (dotted lines) fits
well the indices reported by Méhes et al. [1] (solid lines) for EPC (green) with PFK
(red). The averaged mean squared deviation ∆γ of the result of the video analysis
equals 0.0032.

P (x,y) =
r(x,y)∑
B r(e)

, e ∈ B, r(e) := r(x,y),

B = {x,y ∈ S, |x− y| = ∆x ∧ ξ 6= ξx,y}
, (S7)
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∆tswap ∼ Exp(λ(ξ)), (S8)

λ(ξ) =
∑
B

exp(βsum(x,y, ξ)). (S9)

Here B denotes the set of all possible heterogeneity transitions.
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Fig I. Test whether the scaling of the segregation index changes after the observations
window. Even the cellular automaton simulation with a very flat initial progression does
not reach the asymptotic scaling within the experimental regime, because the scaling
still changes after the observation window (gray box) from t−1/10 to t−1/5. Shown are
the segregation indices for a cellular automaton simulation with adhesion parameter
β = (0.44,−4.06, 0.44)T , time scale of migration τ = 1s, 1402 cells, and a cell type ratio
of 50/50. The flat early algebraic scaling with exponent 1/10 changes after the
observation window of the experiment (gray box) to an algebraic scaling with exponent
1/5. The scaling behavior is thus transitory. Note, that the chosen adhesion parameters
translate to effective parameters db = 0 and b∗ = 9 and correspond to the simulation
with the lowest pseudo-algebraic scaling exponent in Fig 8.
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publication environment segregation index average cluster diameter
algebraic exponent algebraic exponent

Naso and Náraigh [9] Cahn-Hilliard 1/3 (asymptotic)
≥ 1/6 (transitory)

Naso and Náraigh [9] Cahn-Hilliard 2/3 (asymptotic)
Witkowski et al. [4] Navier-Stokes ≥ 1/6 (transitory)

Garcke et al. [8]
Glazier and Graner [12, 13] CPM logarithmic
Nakajima and Ishihara [11] CPM 1/3 (even mixtures) 1/3 (even mixtures)

1/4 (uneven mixtures) 1/4 (uneven mixtures)
Durand [14] CPM 1/4

Cochet-Escartin et al. [15] 3D CPM 0.5
Beatrici and Brunnet [16] boids model 0.18 to 0.22 or logarithmic

Strandkvist et al. [17] boids model 0.025 to 0.17

Belmonte et al. [18]
self-propelled parti-
cle model with ve-
locity alignment

≤ 0.18

Beatrici et al. [19]
active particle ap-
proach

1/4 (without collective motion)

1/2 (collective motion)
Krajnc [20] vertex model ≤ 1/4

Krieg et al [21] experiment 1/10
Cochet-Escartin et al. [15] 3D experiment 0.74

Méhes et al. [1] experiment 0.31 0.5 to 0.74

Table A. Summary of the scalings previously published of studies used in the
introduction.
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Fig J. Exemplary development of the two point correlation in the cellular automaton.
Panel A shows the correlation C(r) at the time t = 55min, which is similar to the start
of the experiment. Panel B shows the correlation C(r) at the time t = 800min, which is
similar to the end of the experiment. The radius r is given in cellular automaton cells of
width ∆x =

√
350µm. The average radius of a cluster is defined by the smallest radius

at which the correlation becomes zero C(r) = 0 (red line).
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Fig K. Illustration of the influence of initial conditions on the segregation process:
Exemplary comparison of the segregation for different initial conditions in the cellular
automaton. For each set of adhesion parameters β1 = (0.44,−4.06, 0.44)T (blue lines),
β2 = (−8.0,−5.5, 0.0)T (red lines) the simulation is started from a random initial
condition γ0 ≈ 0.5 (brighter colored lines) and from a partially sorted field γ0 ≈ 0.25
(darker colored lines), which resulted from segregation with the respective other set of
adhesion parameters. All simulations used 1002 cells and a 50/50 ratio (only γ0 shown).
The parameters β1 are the γ-ρ-fitted adhesion parameters, see Fig 6, the parameters β2

are from Fig I in S1 Text.
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