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[bookmark: _GoBack]S1 Text. Biomechanical material model
Cartilage was modeled as a fibril-reinforced porohyperelastic material model with Donnan osmotic swelling and chemical expansion (FRPHES). Previously, the FRPHES material model has been successfully used to simulate the experimentally observed cartilage behavior after biomechanical compression [1–4]. In this material model, the cartilage is considered as an anisotropic biphasic material including a solid phase with fibrillar (collagen) and non-fibrillar (proteoglycans, PG) components and a fluid phase. Furthermore, the material model considers depth-dependent PG (fixed charge density, FCD) and water content as well as depth-wise collagen distribution and orientation (see S1 Table) [1,3]. 
Cauchy stress tensor of a Neo-Hookean solid material was used to describe stresses in the non-fibrillar solid matrix  [3,5]:
	
	
	(S1)



where  is the deformation gradient tensor,  is the unit tensor and  is the volumetric deformation, i.e., determinant of the deformation gradient tensor. The bulk  and shear moduli  of the non-fibrillar matrix were determined as
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where  (0.16 MPa [1]) is the elastic modulus and  the Poisson’s ratio of the solid non-fibrillar matrix (0.42 [6]). 
In the current material model, stress tensor of the fibrillar collagen network arises from the sum of the collagen fiber stresses in each point, including stresses in primary and secondary fibrils [3]. Hence, collagen network stress tensor  was defined as
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where the  is the Cauchy stress tensor of the collagen fiber k and totf = 9 [3] refers to the total number of fibers. Collagen fiber architecture was modeled as observed in young bovine cartilage (50° in the deep zone, 10° in the superficial zone [90° = perpendicular to the surface]) [1]. For each fibril  (primary fibril  = p, secondary fibril  = s), the Cauchy stress tensor  was defined as [3,4]:
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where  is the depth-dependent relative collagen density (see S1 Table ), C is the ratio between primary and secondary fibril densities (3.009 [3]),  is the normalized unit vector for fibril orientation [3] and  is the outer product operation. Stress in the collagen fibrils  (scalar) was defined as
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where  is the initial constant elastic modulus of a single collagen fiber (20 MPa [1]) and  is the logarithmic fibril strain [4]. 
Fluid flow in the non-fibrillar porous matrix was modeled via Darcy’s law  
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where  is the flow flux in the non-fibrillar matrix,  is the hydraulic permeability ( [1]), and  is the pressure gradient in the cartilage. 
The chemical expansion stress caused by repulsion of the negative charge groups in PGs was modeled as
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where  and  are material constants [3],  and  are external and internal activity coefficients [7], and  is the mobile anion concentration in the cartilage [3,8]. The depth-dependent FCD concentration  is described as a function of volumetric deformation
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where  is the initial depth-wise FCD and  is the porosity, i.e., fluid volume fraction, both presented in S1 Table. 
Donnan osmotic swelling in equilibrium after initial swelling was modeled as 
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where  and  are external and internal osmotic coefficients [7],  is the external salt concentration (0.15 M),  is the molar gas constant (8.3145 J/mol K) and  is the absolute temperature (293 K).
Finally, the total stress tensor  of the cartilage tissue was determined as 
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where  is the chemical potential of water [5].
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