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Abstract. In this supplementary material, we provide detailed infor-
mation supporting the results described in the manuscript. First, we
give formal definitions of the technical notions used in the manuscript.
Second, we provide a detailed description of the model, experimental
data and their encoding, generated rational functions, and individual
computational methods employed in the performed analysis tasks. The
description is extended with two additional computation methods that
have been used to additionally support the obtained results (parameter
space sampling and refinement).
Reproducibility of the results is supported with all necessary input files
and software codes. All input files (the model, analysed properties, data,
and the results) are described in this supplementary text and are avail-
able on Zenodo https://zenodo.org/record/6600766#.YpbF13VBw9E.
The software artefacts are described in the file README.md located
with the software in the publicly accessible GitHub repository (https:
//github.com/xhajnal/DiPS).

1 Preliminaries

Definition 1 (MC). A Markov Chain is a tuple M = (S, P, ιinit, AP, L) over
a countable, nonempty set of states S. The transition probability function
P : S × S → [0, 1] is such that

∑
s′∈S P (s, s′) = 1 for all s ∈ S, the initial distri-

bution ιinit : S → [0, 1] is such that
∑
s∈S

ιinit(s) = 1. Set of atomic propositions

is denoted by AP , and a state-labelling function L : S → 2AP assigns a set of
labels to each state in S.

Given an MCM = (S, P, ιinit, AP, L), the probability space is assigned in the
standard way, i.e. for any l ≥ 0, the prefix set of traces σ = (s0, s1, . . . , sl) ∈ Sl

⋆ Authors acknowledgements are declared in the respective section of the main
manuscript.



is assigned the probability measure PM(σ) = ιinit(s0)
∏l−1

i=0 P (si, si+1). The
property of reaching a BSCC in a Markov Chain can be written in a tem-
poral logic PCTL (Probabilistic Computational Tree Logic) [8]. We here con-
sider a fragment of PCTL properties. These are defined over the traces for
MC M in a standard way, by state formulae induced by the grammar Φ ::=
true | a | Φ | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | PJ(ϕ), where a ∈ AP , ϕ is a path formula,
and J ⊆ [0, 1] is an interval, and path formulae ϕ ::= Φ1UΦ2, where Φ1, Φ2 are
state formulas. We will write P(M |= ϕ) =

∑
s∈S ιinit(s)PM(s |= ϕ) to denote

the probability of satisfaction of PCTL property ϕ in the MC M.

When the transition probabilities are not known, but rather are rational
functions of some parameters from the parameter set V, each over domain [0, 1],
we work with a parametric Markov Chain (pMC). We here restrict our attention
to the case when the transition probabilities are multivariate rational functions
over the variables V, which we will denote by PolV .

6

Definition 2 (pMC). A Parametric Markov Chain (pMC) is a tuple MV =
(S, PV , ιinit, AP, L,V), where PV : S × S → PolV defines the probability transi-
tion matrix, and for each evaluation of parameters θ ∈ [0, 1]|V| induces a well-
defined MC M(θ) = (S, Pθ, ιinit, A, L), where Pθ denotes the instantiation of the
expression PV , for parameter evaluations given by a vector θ. Consequently, for
any θ ∈ [0, 1]|V|, for all s ∈ S,

∑
s′∈S Pθ(s, s

′) = 1.

Definition 3 (BSCC). Given M, a subset T of S is called strongly connected
if for each pair (s, t) of states in T there exists a path s0s1...sn such that si ∈ T
for 0 ≤ i ≤ n, s0 = s, sn = t, and P (si, si+1) > 0 for all i = 0, . . . , n − 1. A
strongly connected component (SCC) of M denotes a strongly connected set of
states such that no proper superset of T is strongly connected. A bottom SCC
(BSCC) of M is an SCC T from which no state outside T is reachable, i.e. for
each state t ∈ T it holds that P (t, T ) = 1.

We denote the steady-state distribution of an MC by µ : S → [0, 1]. Since
almost surely any finite Markov Chain eventually reaches a BSCC and visits
all its states infinitely often, the steady-state distributes the probability mass
among its BSCCs, i.e.

∑
T∈BSCC(M)

∑
s∈T µs = 1 [2].

We will employ Bayesian approaches to estimate parameters agreeing with
data.

Definition 4 (Bayes theorem). Let π(θ) denote the prior distribution over
parameter(s), P (Dobs|θ) the likelihood of data observations under given pa-
rameters, and

∫
θ
P (Dobs|θ)π(θ)dθ the marginal distribution of data observation.

Then, the posterior distribution π(θ|Dobs) evaluates to π(θ|Dobs) =
P (Dobs|θ)π(θ)∫

θ
P (Dobs|θ)π(θ)dθ

.

6 In general, the reachability probabilities for a pMC can be expressed by rational
functions; in case studies shown in this paper, polynomials will suffice.



2 Experimental Data

2.1 Groups of 10 bees

The input data list, D, visualised in Figure A in S1 Text as barplot, is:

[0.2391304348, 0.152173913, 0.2065217391, 0.1195652174, 0.04347826087,

0.1086956522, 0.08695652174, 0.02173913043, 0.02173913043, 0, 0]
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Figure A: Experimental data with Agresti-Coull confidence intervals (using
Dunn’s correction for simultaneous confidence intervals for multiple parame-
ters) and 90% confidence level. Frequencies of the number of stinging bees
(22, 14, 19, 11, 4, 10, 8, 2, 2, 0, 0) resulting from 92 repeated experiments.

It is available as text file within the Zenodo repository at https://zenodo.
org/record/6600766#.YpbF13VBw9E. As the data points, D = (x̂1, . . . , x̂k), are
sheer estimates, to address uncertainty of the data one can create confidence
intervals around respective data point x̂i. From the data we have obtained the
intervals, I, (shown as error bars in Figure A in S1 Text) using 92 samples
and overall confidence level of 90% for all eleven parameters. We calculated
corrected confidence level per parameter using Dunn’s correction as follows:
corrected confidence level = 100 − (10/11) = 99.0909090909. To address the
poor approximation when applied to Bernoulli trials with p close to 0 or 1, we
computed confidence intervals using Aggresti-Coull method [1]:

(0.142404365423760, 0.371789667663575),

(0.0761601111095509, 0.276098599673562),

(0.116847754788942, 0.336620532434309),

(0.0531606878280316, 0.238372277090998),

(0.00583076995249482, 0.144008787950341),

(0.0457848450804105, 0.225506204550591),



(0.0315535645967751, 0.199253654458171),

(0.0, 0.114342459711623),

(0.0, 0.114342459711623),

(0.0, 0.0822898761868151),

(0.0, 0.0822898761868151)

These confidence intervals are further used in one of the supported methods
(space sampling and refinement).

2.2 Full datasets

The complete sets of the three experiments described in Table 1 in the manuscript
are visualised in Figure B in S1 Text. At each row, the raw data of the particular
dataset are shown.

Figure B: Raw experimental data of dataset 1, dataset 2, and dataset 3. Fre-
quency at which a given number of stings is observed at the end of the test
duration, for each group size. The sample sizes (number of groups tested) are
N1 = [60, 60, 60, 60], N2 = [68, 68, 60, 56, 52, 48] and N3 = [40, 40, 40, 40] ordered
from the smallest group size (1 bee) to the largest (10 or 15 bees depending on
the dataset).



3 Model

In Figure D in S1 Text we show an extension of the model from Figure C(C) in S1
Text to three bees. It is worth noting that here we do not display the full model
(ten bees) due to its size. The full model is available at https://zenodo.org/
record/6600766#.YpbF13VBw9E. To represent the model, we utilise the abstract
PRISM modelling language in .pm format (the states and transition probabilities
are explained in Figure D in S1 Text. To obtain a model for a given population
size we created a Python script, which makes a part of the tool package. The
script automatically generates the state space of the model.

Figure C: Modelling stinging response for n = 2. A) Example probability density
function of aggressiveness. B) Four different situations for a group of two bees.
Simulation of different stinging behaviour across time, for four different initial
aggressiveness situations. C) A Markov chain model of four different stinging
scenarios for a group of two bees. D) An example trace of a Markov chain model
generated for n = 10.

Non-decreasing parameter values We propose an assumption/constraint on
parameters values. In the transitions of the model (see Figure D in S1 Text), the
term encoding the probability of a bee stinging when i amount of pheromone
given the bee did not sting at k amount of pheromone equals:

ri − rk
1− rk

. (1)
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Figure D: Model of three bees as a parametrised Markov Chain. In each state,
(a1, . . . , an, b), a vector depicting the state of the population is shown, where
each bee agent, a1, . . . , an, tracks its state - init before stimulus, 1 stinging,
and !i not stinging when i amount of pheromone is present, i.e. A < θi. Flag
b indicates whether there is no bee which could sting, hence whether we have
reached the steady-state (not shown in Figure) – this helps us to query the model
using temporal logic. Transitions, updates of bee states whether to sting or not,
are parametrised by the probability of stinging when i amount of pheromone is
present - ri. When multiple bees are updating their state, we consider this as an
independent decision and hence multiply respective terms. Terms such as rk−ri

1−ri
interpret the conditional probability P (A > θk | A < θi).

Our model assumes that the probability ri is not smaller than rk, i.e. ri ≥ rk,
otherwise the term describing conditional probability would not be well-defined
(since it could take a negative value). To avoid the possibly ill-defined transition
probabilities, the value should be 0 in case ri < rk. Since neither PRISM nor
Storm is capable of working with if-then clause nor max(0, ri−rk

1−rk
), we constraint

the parameter values of the resulting rational functions. We have adapted DiPS
for this purpose with the implementation visible on the branch non-decreasing.
Another option is to introduce fresh parameters for each of these terms. However,
this would increase the number of parameters quadratically as there are up to
n·(n−1)

2 parameter pairs to be substituted.

4 Methodology

4.1 Data Encoding

To estimate valid parametrisations of the model which agree with the data,
a link between the events observed in the experiments and the events in the
model has to be drawn. In our case, the number of bees stinging at the end



of an experimental trial represents reaching the respective BSCC in the model.
Probabilities to reach each of the BSCCs can be calculated manually using all
the paths leading to the BSCC and common prefixes reflected, e.g. using the
inclusion-exclusion technique, to compute the value or the symbolic expression
over model parameters. With the increasing size of the model, this task becomes
tedious and even infeasible for human. To resolve this, if the data are formalised
in form of temporal logic, model checking, an automated verification method,
can be used instead. We use a commonly used Probabilistic Computational Tree
Logic (PCTL) for pMCs. Each temporal property is querying the probability to
reach a single BSCC:

P=?[F (a0 = 0)&(a1 = 0)&(a2 = 0)& . . .&(a9 = 0)&(b = 1)], (2)

where the probabilistic operator P=? enumerates the probability of the formula
given in the square brackets. It consists of the future operator, F , denoting
the eventual reachability of a state satisfying the enclosed formula. The atomic
propositions forming the enclosed formula express the state properties. The vari-
able ai has the range {0, 1} where ai = 1 (resp. ai = 0) encodes the fact ith
bee is stinging (resp. not stinging). The proposition b = 1 encodes the ”steady-
state” property of the state (the state forms a trivial BSCC). Details of the
state variables are shown in Figure D in S1 Text. After the properties are cre-
ated, one can exactly compute the probabilities of satisfaction using parameter
synthesis [10]. In that case, the result is not a single value but an expression over
model parameters having the form of a rational function.

4.2 Rational Functions

Model checking is a decision problem answering whether a model satisfies a given
property. In the probabilistic setting, using quantitative properties, properties
with prefix P=?, the result is not True or False, but the probability of satisfaction.
Moreover, having the model parametrised, the probabilities of satisfying given
property depend on the values of the model parameters. Hence, parametric model
checking returns a symbolic expression over parameters; in the case of pMC
models in the form of rational functions.

In our case study, each rational function estimates the probability of reaching
respective BSCC in the model encoding number of stinging bees. In particular,
we obtain 11 rational functions, encoding events of 0, 1,..., 10 bees stinging,
with 11 model parameters, (r0, r1, . . . , rn). Let us denote the rational functions
as F = (f0, f1, . . . , fn). From this point we will refer to probability of seeing
i stinging bees as fi. To obtain the rational functions DiPS leverages existing
tools Storm [5] or PRISM [11]. After that, we factorise the rational functions to
facilitate parameter estimation.

Without the rational functions the probability of satisfaction of a PCTL for-
mula, probabilities of reaching respective BSCC in our case, one needs to run the
pMC chain in order to the estimate the probability instead of simply evaluating
the rational functions. As this has to be done in each parameter point to be



analysed, the estimation becomes imprecise and/or expensive. Moreover, global
and exact methods can be applied with knowledge of the rational functions.

We have obtained the rational functions using DiPS, which calls PRISM
to run parametric model checking of the model and a temporal property of
reachability of respective BSCC one-by-one. For instance P (K(∞) = 5) = f5 =
−252r0(r5−1)5(r40 −5r30r4−10r20r

2
3 +20r20r3r4−10r0r

3
2 +30r0r

2
2r4+30r0r2r

2
3 −

60r0r2r3r4 − 5r41 +20r31r4 +30r21r
2
3 − 60r21r3r4 +20r1r

3
2 − 60r1r

2
2r4 − 60r1r2r

2
3 +

120r1r2r3r4). One can see there are 16 different paths to obtain 5 stinging bees
as 16 different monomials (in the last bracket). We do not show all the rational
functions due to their length.

Linear and sigmoidal models were created by substituting ri with right-hand
side of respective equations in each rational function (result of parametric model
checking of the agnostic model).

4.3 Non-triviality of the Likelihood Function

Here we demonstrate that even with sigmoidal model one can not draw the prob-
abilities of reaching respective BSCC from a simple distribution. We show this
by using a single sigmoidal parametrisation: r0,Km, Vmax, n = [0.1341, 0.8401,
0.2329, 3], which resolves in r0, r1, . . . , rn = [0.1341, 0.1961, 0.2261, 0.2308, 0.232,
0.2324, 0.2326, 0.2327, 0.2328, 0.2328] with rational functions f0, f1, . . . , fn =
[0.237, 0.188, 0.2005, 0.1992, 0.1173, 0.0444, 0.0114, 0.002, 0.0002, 0, 0], while it
has two peeks - at the first and the third function.

4.4 Implemented Computational Methods

The results have been primarily obtained using the DiPS tool (Data-informed
Parameter Synthesiser) which is available open source at https://github.com/
xhajnal/DiPS. It is worth noting that besides the two methods presented in
the manuscript, DiPS adds two additional methods for parameter estimation
of DTMCs – Space Sampling and Space Refinement. Here we describe all four
methods and their adaptations used in the manuscript:

– Optimisation finds a single point in the parameter space with the least L2
distance wrt. data,

– Metropolis-Hastings identifies a distribution over all possible parametri-
sations based on their relative likelihood wrt. data using Bayesian inference,

– Space sampling marks single points in the parameter space satisfying
(green) or not (red) the constraints [4] obtained from data,

– Space refinementmarks entire regions (hyper-rectangles) in the parameter
space within which the constraints are always satisfied (green), or not (red),
using either a SMT solver [4, 7, 9, 10] or interval arithmetic, and

Each method provides its pros and cons, which can be mainly depicted as
a trade-off between computational demand and the type of information they
provide. In the rest of this section we introduce respective methods with its
input structures. For complete description please follow DiPS tutorial at https:
//github.com/xhajnal/DiPS/blob/master/tutorial.pdf.



Optimisation Optimisation searches parameter space Θ ⊂ Rm and returns a
single parametrization θ̂ ∈ Rm which minimises given objective function, in our
case L2 distance - square root of the sum of squares of distances between the k
rational functions, F, st. fi(θ) ∈ R, and k data points, D, st. x̂i ∈ R:

θ̂ := argmin
θ∈Θ

∑
i∈{1,...,k}

(fi(θ)− x̂i)
2

With the knowledge of the rational functions, optimisation is a classical so-
lution for this problem, however as the result is a single point, it can be far
from the true value - as an example consider a rational function p · q and exper-
imental observation of 0.2. This can be described as a function p · q = 0.2 with
a hyperbolic curve as the result. The regression will return point [0.44, 0.44]
but absolutely disregards continuous range of other parameters values resulting
with rational function value with the same distance. For this reason we have
implemented other methods which deal with this problem.

Metropolis-Hastings Metropolis-Hastings belongs to a group of Markov Chain
Monte Carlo (MCMC) methods. For a given number of iterations t it walks in
parameter space Θ ⊂ Rm , producing a sequence of points θ0, θ1, . . . , θt. At each
point it decides whether to accept or to reject a new point. In particular, the
acceptance rule compares the probability of the new sample point θ′, P (θ′|D),
with the probability of the current sample point θ, P (θ|D). Using Bayesian rule,

P (θ|D) =
P (D|θ) · P (θ)

P (D)
.

As we do not consider any prior knowledge of the distribution of parameters
values, the uniform distribution is used. Moreover, as the probability of the data
is equal in both points, the likelihood of the samples, P (D|θ′), are compared:

P (θ′|D)

P (θ|D)
=

P (D|θ′) · P (θ′)

P (D)
· P (D)

P (D|θ) · P (θ)
=

P (D|θ′)
P (D|θ)

The new point, θ′, is accepted if the fraction is greater than one. In the case the
fraction is smaller than one, to avoid local optima, Metropolis-Hastings accepts
the new point with a small probability.

If the new point, θ′, is accepted, we move to that point, θi = θ′i−1, otherwise we
keep the current point, θi = θi−1. After the walk is done, the set of accepted
points serves as a prediction of the distribution of viable parameter values -
posterior distribution.

We adapted the Optimisation and Metropolis-Hastings to search in only non-
decreasing parameter subspace as discussed in Section 3.

Note that a different setting (not default), especially the value of deviation
of the transition function, may have significant impact on the result, e.g., the
number of accepted points.



Constraints In general, any set of (in)equalities over the set of parameters, V,
can serve the purpose of constraining the parameter space. In our case, we use
the confidence intervals, I, computed from the data points, x̂. As a result, each
of the rational function, fi, is within the respective interval, Ii, creating this
conjunction:

n∧
k=0

(fi ∈ Ii).

Space Sampling In the first step of the method, a uniform grid of a given size
in each dimension of parameter space is created. Consequently, constraints are
checked in each of these points and if all of the constraints are satisfied the pa-
rameter point is marked as satisfying, sat for short, and marked as unsatisfying,
unsat, otherwise. The meaning of unsat reflects the situation when at least one
of the constraints is not satisfied.

Space Refinement Similarly as in the space sampling, refinement checks the
satisfaction of the constraints. However, to obtain a global result instead of
discontinuous parameter points, regions are checked instead. In the initial step,
the whole parameter space is verified to satisfy the constraints. If all of the points
within the space satisfy the constraints, the space is marked as safe. If all the
points within the space do not satisfy the constraints, the space is marked as
unsafe. If neither of the two holds, there is a sat and an unsat point within the
space, the space is split into two and the procedure is called recursively. This
process continues until the specified coverage is reached (a given threshold of the
fraction of the safe and unsafe subspace).

To check whether the given space is safe or unsafe we use satisfiability mod-
ulo theory (SMT) solvers z3 [3] and dreal [6], or interval arithmetic of scipy [12].
SMT solver is an extension of Boolean satisfiability problem (SAT), decision
problem whether there exists satisfying evaluation of a given Boolean formula.
SMT extends SAT with theories expressed in first-order logic and more struc-
tures, in our case we utilise (in)equalities over real numbers.

To learn more about the tool and learn step-by-step usage with an example,
please read the tutorial.pdf available at GitHub. Thanks to DiPS, the entire
workflow is fully reproducible. Both input files – the model, properties, and the
data – as well as the results described in the following sections of the supporting
material (Optimisation Results, Metropolis-Hastings Results, Model Selection,
and Sampling-Based Local Sensitivity Analysis) are available at Zenodo (https:
//zenodo.org/record/6600766#.YpbF13VBw9E).



5 Results

5.1 Optimisation Results

The results, optimised parametrisation and respective rational functions in the
point, provided in this section are visualised in Figure E in S1 Text. Due to
stochastic nature of optimisation algorithms one can obtain slightly different
parametrisation, therefore we round the result values to 4 decimals.

Figure E: A) Single point estimation (parametrisation minimising the L2 dis-
tance between the rational functions and data). B) For comparison, rational
function values (coloured lines), data (dashed line), and 90% confidence inter-
vals computed from data points (black error bars).

Agnostic Model Optimisation results in parameter point, [r0, . . . , r9] = [0.1341,
0.2159, 0.2379, 0.3019, 0.4167, 0.4167, 0.4167, 0.5094, 0.5094, 0.7241]. In this
point, the rational functions, [f1, . . . , f10], evaluate to: [0.2371, 0.1501, 0.2045,
0.1178, 0.0512, 0.0985, 0.0847, 0.0248, 0.0228, 0.0043, 0.0043] with the distance
to data equal to 0.0153.

Linear Model Optimisation results in parameter point, [r0, delta]: [0.0566,
0.1385]. In this point, the rational functions, [f1, . . . , f10], evaluate to: [0.2253,
0.1965, 0.1543, 0.1197, 0.0927, 0.0713, 0.0538, 0.0391, 0.0262, 0.0151, 0.0059]
with the distance to data equal to 0.1019.

Sigmoidal Model Optimisation results in parameter point, Km, Vmax, n, r0:
[20.0, 1.3827, 0.9604, 0.1344]. In this point, the rational functions, [f1, . . . , f10],
evaluate to: [0.2364, 0.177, 0.1511, 0.1279, 0.1048, 0.0811, 0.0577, 0.0362, 0.0189,
0.0073, 0.0016] with the distance to data equal to 0.098.



5.2 Metropolis-Hastings Results

The results obtained with the Metropolis-Hastingsmethod can be almost exactly
reproduced, assuming that the numbers of iterations as specified below are fol-
lowed. Detailed description of the settings and results is shown in Table A in S1
Text.

Agnostic model Result posterior distribution as a result of 10 million iterations
is shown in Figure F(A) in S1 Text. We have run the Metropolis-Hastings for
twice many iterations to check the convergence of the method at 10 million
iterations. Thanks to the convergence, a replica with the same or higher number
of iterations should result in almost the same figure.

Linear model We have adapted Metropolis-Hastings algorithm for the linear
model such that it walks in viable parameter space, using constraint r0+9∆ ≤ 1.
Otherwise would r9 evaluate to a value above 1. Result posterior distribution as
a result of 30 million iterations is shown in Fig 6B.

Sigmoidal model Result posterior distribution as a result of 358,287 iterations
is shown in Figure F(C) in S1 Text. This particular instance of Metropolis-
Hastings was kept running for similar time. However, since the rational functions
of the sigmoidal model are only partially factorised the procedure went through
significantly fewer points.

Figure F: Metropolis-Hastings results of the agnostic (A), linear (B), and sig-
moidal (C) model: set of accepted points. Each accepted point shown as a line
with values of respective parameter point. Burn-in period selected as 25%. We
run the agnostic model for twice many iterations to check the convergence of the
method. The black line shows the respective optimised point.



# iterations
# accepted

points
burn-in
period

initial
parameter

computational
time

# parameters

Agnostic 10,000,000 2,249 25% [0.1, . . . , 0.1] 15.67h 10

Linear 30,000,000 546,934 25% [0.5, 0.5] 12.56h 2

Sigmoidal 358,287 19,841 25% [50, 5, 5, 0.5] 96h 4

Table A: Individual settings and corresponding results achieved with the
Metropolis-Hastings method for agnostic, linear, and sigmoidal model (shown
in particular rows). The columns display the following information respectively:
the total number of points explored; the number of accepted points; the propor-
tion of accepted points which were trimmed out from the beginning; the initial
parametrisation; the computation time (in hours); and the number of dimensions
of the explored parameter space (the number of explored parameters).

5.3 Model Selection

We computed the AIC scores for the linear and the sigmoidal model to choose
the best model that fits our data. First, the AIC is based on the rational function
values fi:
AICf (lin) = 11 log(0.0103837400504974/11) + 2 · 2 = −72.6195036836891
AICf (sig) = 11 log(0.0094159680459984/11) + 2 · 4 = −69.6956793295523
Next, we compute the AIC scores based on the parameter values ri (RSS com-
pared to agnostic model):
AICr(lin) = 10 log(0.020280751758762/10) + 2 · 2 = −58.0066812496777
AICr(sig) = 10 log(0.044737975830065/10) + 2 · 4 = −46.0951765989556

Our previous results suggest that the sensitivity of the parameters ri to the
model output decreases for increasing i, and the uncertainty increases. Therefore,
we weigh the fit of the parametrization based on the ranges of accepted points
(variance) we obtain from the Metropolis-Hastings algorithm (Figure F(A) in
S1 Text). The weights are computed using the min-max normalization of the

ranges w = [w0, ..., w9]: 1 − wi−min(w)
max(w)−min(w) . We then multiply the weights with

the residuals of the respective model to get normalized residuals to the true pa-
rameter values. We get the following AIC scores based on normalized residuals:

AICr n(lin) = 10 log(0.00318550133041276/10) + 2 · 2 = −76.5173069175542
AICr n(sig) = 10 log(0.00306976526194241/10) + 2 · 4 = −72.8873927520845

We observe that the AIC score is lower for the linear model in all three variants,
hence we conclude that the linear model is preferred over the sigmoidal model.
However, the AIC only evaluates the relative quality of the model compared to
other models, not the absolute quality. Therefore, we need to validate the ab-
solute quality of the linear model, which usually includes to check the model’s
residuals and predictions.
Figure G(a) in S1 Text shows the residuals of the linear model on the vertical
axis, and the independent variable (parameters) on the horizontal axis. We see
that the residuals are randomly dispersed around the horizontal axis, what in-
dicates that the linear regression model is appropriate for the data and a good
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Figure G: Residual plots of the parameter values obtained by the linear model.
a) Residuals of linear model (compared to the agnostic model). b) Normalized
residuals. c) Q-Q plot to check that residuals come from a normal distribution.
d) Q-Q plot of normalized residuals.

fit. Figure G(b) in S1 Text confirms this result for normalized residuals.
Figure G(c) in S1 Text and Figure G(d) in S1 Text are Q-Q plots, showing
quantiles of the data versus quantiles of the normal distribution. We see that
the points follow a straight line, what indicates that the residuals are drawn
from a normal distribution. This supports our assumption that the linear model
is a good fit of the data.

The next step in model validation is to test the model’s predictions. We com-
pute the coefficient of determination, R2, as a measure of the predictive power
of the linear model based on the parameter values ri:
R2(lin) = 1− 0.020280751758762

0.26899700837561 = 0.924606032307828
Again, we repeat the computation for normalized residuals:
R2

n(lin) = 1− 0.00318550133041276
0.117114003801542 = 0.972799996353888

High R2 values confirm that the linear regression model fits the data well, be-
cause the predictions approximate the real data points. More specifically, the
results tell us that 92.42% (resp. 97.28%) of the variation in the observations is
explained by the model.



5.4 Sampling-Based Local Sensitivity Analysis

To evaluate the uncertainty related to each of the parameter values inferred by
optimisation, we have implemented a local sensitivity method based on sampling.
In more detail, the method samples parameters one by one while fixing all but
one single parameter. A single parameter value of the sampled point is used to
recompute the distance. Sampled points which obtained a lower distance than
the given parametrisation are visualised with blue colour and those with the
distance below five quarters of the distance of the given parametrisations are
shown in red. We checked the agnostic model (Figure H in S1 Text), linear
model (Figure I in S1 Text), and sigmoidal model (Figure J in S1 Text). In the
visualisations, with blue colour highlights the intervals of sampled parameter
values with lower distance, while the red colour highlights the intervals which
contain sampled point with the distance lower that five quarters of the original
distance. There are 10 000 points (with uniform distribution) sampled for each
of the parameters.

In the results achieved with all models, one can see that parameters with
lower indices are much more sensitive. Intuitively, this can be explained by the
fact that those parameters have impact on more rational functions involved, and
especially on the rational functions with lower indices.

Figure H: Sampling-based local sensitivity analysis from optimised point of the
agnostic model.



Figure I: Sampling-based local sensitivity analysis from optimised point of the
linear model.

Figure J: Sampling-based local sensitivity analysis from optimised point of the
sigmoidal model.



5.5 Application to different group sizes

To study the effect of group size on stinging likelihood, we applied our methods
on our three experimental datasets. Figure K in S1 Text presents the results ob-
tained with the agnostic method (points, and linear regression on those points
in solid lines), optimisation of the linear model (dash-dotted lines) and optimi-
sation of the 4-parameter sigmoidal model (dashed lines), for each group size
(depicted with different colours). As expected, all methods produced similar re-
sults, broadly revealing that individual bees became less likely to sting (ri) at
any given units of alarm pheromone released (i). Note that the difference be-
tween the linear model and the linear regression on agnostic points is caused by
the fact that the linear model better accounts for sampling uncertainty of exper-
imental data points. In order to determine which of these models was the best
fit for our data, we then computed the AIC scores for all of them (Table B in
S1 Text). When comparing to the experimental data (Rat. functions), we found
that the linear model performed best (bold values) most often (6 cases out of
11, compared to 2 and 3 cases for the linear regression on agnostic points and
sigmoidal model, respectively). Hence, we used the linear model for our detailed
analysis of the biological results (see main text).

Figure K: Results of dataset 1, dataset 2, and dataset 3. Points: non-decreasing
agnostic method. Lines obtained with linear regression on agnostic model
(solid), linear model optimisation (dash-dotted) and sigmoidal model optimi-
sation (dashed). The colours correspond to individual group sizes.
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