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1 Boolean model of cellular signalling
1.1 Theoretical background
Vector-based Boolean models are powerful tool to understand the topology of a network. They are generally
based on logical arguments and moreover parameter-free. Given a network, each of its N components is
represented by a k-dimensional vector of binary states pi ∈ {0, 1}k, i = 1..N , that represent chosen properties.
The state of each component i can be altered based on all other states by Boolean rules or functions B :
(p1,p2, ..,pN )→ pi. In each iteration all Boolean functions Bj , j = 1..M , are applied synchronously to the
states to generate updated states for the next step. Eventually, the system can end up in a logical steady
state where the states of all components remain constant.

This formalism can be used to understand signalling events in cells in order to find the eventual activation of
transcription factors. Here, we used a vector-based Boolean model of the nutrient signalling pathways Snf1,
Tor and PKA that was previously published [1] and extended it further with the oxidative stress signalling
pathways Yap1 and Sln1, as well as crosstalk to Msn2/4 that is also part of the nutrient signalling pathway
PKA (Fig 1A). Each component in the network is represented by the properties presence, phosphorylation,
oxidation and specific activity (k = 4). The Boolean rules are based on an extensive literature review to
describe the signalling events, and correspond to simple if-statements, such as: IF protein X is present and
phosphorylated AND protein Y is present and oxidised then protein Z gets phosphorylated. The activity
property is especially important in our setting and is interpreted as being in the nucleus and interacting with
the DNA, which can lead to expression or repression of genes. In particular, one can therefore investigate
how perturbed input signals regarding nutrient availability and stress can influence the resulting transcription
factor activity. Moreover, Boolean models generally allow to find logical gaps in the network [2, 3].

1.2 Addition of oxidative stress signalling
In total, we added 9 new components and 13 new rules, including 1 crosstalk reaction, to the existing model
of nutrient signalling [1] to account for oxidative stress signalling by the Yap1 and the Sln1 pathway.

Yap1
Yap1 mediates ROS stress signalling by sensing of H2O2 mediated trough the peroxidin Gpx3[4, 5]. In the
presence of H2O2 Gpx3 together with Ybp1 facilitates the formation of active Yap1 [4, 5] that will accumulate
in the nucleus where it induces it’s gene targets including SOD1, GSH1, GPX2, TRX2 and TSA1 [6, 7]. The
pathway returns to it’s reduced state when reduced by thioredoxin, which is also a target gene of Yap1 [8].

Sln1
The Sln1 pathway is associated with osmoregulatory response, where Sln1 regulates Ypd1 phosphorylation.
Ypd1 akts on the Ssk1 and on the transcription factor Skn7 [9, 10]. The role of this pathway in ROS regulation
is not elucidated, but there are increasing reports of it’s association to oxidative stress response where Skn7
plays a role, alone and in connection with Yap1 [9, 10].

Crosstalk to nutrient signalling
Msn2 and Msn4 are central stress regulators, targeting an number of oxidative response genes. The activation
in respons to oxidative stress is mediated trough the thioredoxins Trx1 and Trx2[11]. Knockouts of Msn2 or
Msn4 exhibit hypersensitivity to H2O2 and the response is only partially overlapping with that of Yap1 and
Skn7 [12].

2 Enzyme-constrained flux balance analysis of the metabolic net-
work

2.1 Theoretical background
Generally, in flux balance analysis (FBA) [13–15] chemical reactions in the network are represented by a
stoichiometric matrix S. Assuming that each component can only be used as much as it is produced, the
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system is naturally constraint by this mass balance requirement. Mathematically, the fluxes v through the
network have to satisfy Sv = 0. Given an objective function, that can be an individual flux or a combination
of several fluxes, all fluxes can be optimised accordingly. Biologically, examples for objective functions are
maximal growth, minimal nutrient uptake or maximal growth yield. The optimal solution can be found by
solving the linear program in (1).

optimise z = cT v (1)
s.t. S v = 0

vmin ≤ v ≤ vmax,

with c defining the coefficients of the fluxes in the objective function. Furthermore, vmin and vmax are
general lower and upper bounds on the fluxes.
Enzyme-constrained FBA (ecFBA) [16, 17] is an extension of the traditional FBA, incorporating enzymes
as components that are required for catalysing certain reactions. Each enzyme ei that is used is drawn from
an enzyme pool epool and is consumed in one or more reactions with a stoichiometric coefficient inversely
proportional to its respective turnover number kcat. The enzyme pool is itself restricted by the total amount
of proteins Ptot in the cell. The new additional constraints in the optimisation problem are stated in (2).

s.t. −
∑

j

nij

kij
cat

vj + ei = 0, ∀i (2)

−
∑

i

MWiei + epool = 0

emin ≤ e ≤ emax

0 ≤ epool ≤ σfPtot,

with nij being the number of enzymes i that are needed to catalyse reaction j. In most cases nij equals 0
or 1, but can in exceptional cases of enzyme complexes be higher. Further, MWi are the molecular weights
of the enzymes, f corresponds to the fraction of the total protein mass covered by the enzymes in the model
and σ to the saturation factor of the enzymes. Similar to before, emin and emax are general lower and upper
bounds on the enzyme usages. Typically, each optimisation is followed up by a second optimisation that
picks the solution with a minimal sum of all fluxes and enzyme usages (parsimonious FBA). EcFBA has been
shown to improve the predictive power in comparison to the traditional FBA [1, 17].
Note that fluxes typically have the unit [mmol(gDWh)−1] or [h−1], while enzyme usages are measured in
[mmol(gDW )−1] and protein content in [g(gDW )−1].

2.2 Addition of damage producing reactions
In this work, we make use of a previously published ecFBA model of the central carbon metabolism [1, 16]
and incorporated new chemical reactions that produce reactive oxygen (ROS) and nitrogen species (RNS)
(Fig 1B).
The new reactions are based on the fact that while cells produce energy in the mitochondria about 0.2-2%
electron leak from the electron transport chain (ETC) [18]. Complex 3 in the ETC can be responsible for
some of those electrons, while most of them escape from complex 1 [18–20]. The major downstream ROS and
RNS reactions that are caused by the free electrons are summarised in the following according to [21–27].
When electrons react with oxygen (O2) the negatively charged superoxide (O−

2 ) is produced. O−
2 can be

transformed to H2O2 via superoxide oxidoreductase (SOD1, SOD2). H2O2 can be transformed back to water
by glutathione peroxidase (GPX1-3). In that reaction glutathione disulfide gets glutathione. To transform
back glutathione to glutathione disulfide the enzyme glutathione oxidoreductase (GLR1) is needed. Similar
reactions happen for thioredoxin instead of glutathione, using thioredoxin peroxidase (TRX1-3) and reductase
(TRR1-2). In addition, H2O2 transforms to OH· via Fenton- and Haber-Weiss reactions with iron cations
as mediators. OH· can also be indirectly produced by OONO−, encompassing several reactions that besides
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others convert the nitric oxide radical NO· to NO·
2. In this simplified pathway the major cause of damage is

the hydroxyl radical (OH·) that can oxidise proteins and make them dysfunctional.
In addition, we introduced a non-growth associated ATP cost (NGAM) to the model,NGAM(t) = D(t)

P (t)+D(t) ·
NGAMmax., with the NGAMmax as in [28].
In total, it resulted in 52 new reactions and 41 new components including 13 new enzymes in the ecFBA
model compared to [1]. Necessary kcat values were adopted from the consensus yeast metabolic model [28].

3 Dynamical model of growth, cell division and damage accumu-
lation

To describe the protein damage accumulation over time, we make use of an ordinary differential equation
(ODE) model, that is based on three forces: damage formation, damage repair and cell growth. The biomass
of a cell M [gDW ] follows a simple linear ODE with a time-dependent growth factor g(t).

dM(t)
dt = g(t)M(t). (3)

Further, the fractional intact (P ) and damaged (D) protein content [g(gDW )−1] are described by two coupled
ODEs. Intact proteins get damaged at a rate f(t) and damaged proteins are repaired at a rate r(t), such
that

dP (t)
dt = −f(t)P (t) + r(t)D(t) (4)

dD(t)
dt = +f(t)P (t)− r(t)D(t). (5)

We assume the total protein fraction to be constant P (t) +D(t) = const, however the composition of intact
and damaged proteins changes over time.
For constant rate parameters g(t) = g, f(t) = f and r(t) = r the solutions to Eq (3)-(4) can easily be
obtained by calculating eigenvalues and eigenvectors.

M(t) = M(0) · egt (6)

P (t) = 1
f + r

·
[
r(P (0) +D(0))− (D(0)r − P (0)f)e−(f+r)t

]
(7)

D(t) = 1
f + r

·
[
f(P (0) +D(0)) + (D(0)r − P (0)f)e−(f+r)t

]
. (8)

We incorporate cell division as a discrete instantaneous event in the model. Let s ∈ [0.5, 1] denote the size
(= mass) proportion of the mother cell at cell division. Then, as soon as enough biomass has been produced,
M(td) = s−1M(0), the cell can divide into a mother cell and a daughter cell of sizes

mother
M ← sM(td) = M(0)

daughter (9)
M ← (1− s)M(td) = (1− s)s−1M(0).

At the same time, the total fractional protein content in both compartments remains constant. Without
damage retention mechanisms, we assume that also P and D individually remain constant across the com-
partments. Increasing the retention factor re ∈ [0, 1] accounts for the asymmetric distribution of damage
at cell division [29, 30], resulting in a higher fraction of damaged proteins in the mother cell compartment
and a lower fraction of damaged proteins in the daughter cell compartment. To ensure that the masses in
both compartments are conserved, the fraction of intact proteins is at the same time decreased or increased
respectively in mother and daughter. Consequently, if at cell division the content is P (td) and D(td), the
variables are updated according to
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mother
P ← (1− re)P (td)
D ← (1 + re)D(td)

daughter (10)
P ← (1 + re)P (td)
D ← (1− re)D(td).
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