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S1 Text 

 

Generation of draft reconstructions 

Four different reconstruction approaches were used for genome-scale metabolic reconstruction 

generation: KBase/ModelSEED [1,2], RAVEN 2.0 [3], AuReMe/Pathway Tools v19 [4,5] and 

CarveMe [6]. Within the KBase web application, the genome assemblies were RAST-annotated [7] 

using the 'annotate_contigset' function using code cells. Further, draft reconstructions and 

auxotrophy predictions were generated using 'build_multiple_metabolic_models' and 

'predict_genome_auxotrophy'. 

The RAVEN 2.0 reconstruction pipeline was applied with the amino-acid FASTA files for all OTUs. 

The required Hidden Markov models (HMM) were generated based on KEGG Orthology (KO) files 

for prokaryotic organisms obtained from KEGG v90 [8] with a 90% protein redundancy cut-off. For 

multiple sequence alignments (MSA), MAFFT v7.427 software [9] was used. Within MATLAB [10], 

default settings were used for the RAVEN 2.0 functions for automated reconstruction of KEGG and 

MetaCyc reconstructions. As an exception, the number related species considered for sequence 

similarity search was set to 30. Moreover, spontaneous, stoichiometrically-undefined and 

incomplete reactions were excluded from the draft reconstructions. 

AuReMe draft reconstructions were generated using its annotation-based reconstruction method 

(Docker image aureme-img:2.1). To this end, the genome assemblies were first annotated using 

DFAST [11] and then Pathway Tools data files were obtained for all annotations. These were 

converted to PADMet files to reconstruct the draft reconstructions with AuReMe. Finally, as a fourth 

approach, CarveMe was used with default settings with the amino-acid FASTA files as inputs. 

Further processing and evaluation of the obtained draft reconstructions was done with MATLAB 

using in-house functions as well as functions provided by the COBRA toolbox [12] as described 

below. 

 

Distance measures applied to compare draft reconstructions 

SVD distance The singular values of the stoichiometric matrices 𝑆(𝑖) for each reconstruction 𝑖 are 

first determined and scaled to the respective maximum. The distance between two reconstructions 

is then assessed by the statistic of the two-sample Kolmogorov-Smirnov test, which quantifies the 

distance between the respective distributions of scaled singular values [13]. 

Reaction Jaccard distance (JD) For a pair of reconstructions 𝑖 and 𝑗, the Jaccard distance of 

reaction sets is calculated by: 

𝑑𝐴𝐵 =  1 −
𝐴 ∩  𝐵

𝐴 ∪  𝐵
(1) 

with 𝐴 and 𝐵 being the reaction sets of reconstructions 𝑖 and 𝑗, respectively. 
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Metabolite JD As in Eq. 1 

𝑑𝐴𝐵 =  1 −
𝐴∩ 𝐵

𝐴∪ 𝐵
(1)

the Jaccard distance is calculated for the metabolite sets of the reconstructions 𝑖 and 𝑗. 

Dead-end metabolite JD The Jaccard distance between the sets of dead-end metabolites for 

reconstructions 𝑖 and 𝑗 are calculated as in Eq. 1. 

E.C. number JD The set for E.C. numbers for each two reconstructions are compared as in Eq. 1 

for each pair of reconstructions 𝑖 and 𝑗. 

Dead-end metabolite number distance The set of all dead-end metabolites, denoted by 𝐷𝐸, is 

obtained for each reconstruction by the COBRA function 'detectDeadEnds' [12]. The number of 

dead-end metabolites, |𝐷𝐸| is then scaled to the number of metabolites, 𝑚, in the respective 

reconstruction. The distance between reconstructions 𝑖 and 𝑗 is then calculated as: 

𝑑𝑖𝑗
𝑛𝐷𝐸 = 𝑎𝑏𝑠 (

|𝐷𝐸𝑖|

𝑚𝑖

 −
|𝐷𝐸𝑗|

𝑚𝑗

) . (2) 

E.C. number occurrence distance For this distance measure, the sets of E.C. numbers for two 

reconstructions 𝑖 and 𝑗 are compared to the set of all EC numbers retrieved from BRENDA [14] and 

corrected with KEGG for possible updates. The occurrence of each E.C. number is calculated and 

scaled by the ratio between the number of reactions and the number of E.C. numbers: 

𝐸𝐶𝑡𝑜𝑡𝑖
′

=  ( 1 −
|𝑅𝑖|

|𝐸𝐶𝑡𝑜𝑡|
) ⋅  𝐸𝐶𝑖

𝑡𝑜𝑡 . (3) 

The resulting vectors 𝐸𝐶𝑖
𝑡𝑜𝑡 and 𝐸𝐶𝑗

𝑡𝑜𝑡 are compared using the Spearman rank correlation 

coefficient: 

𝑑𝑖𝑗
𝑛𝐸𝐶  =  1 −  𝑐𝑜𝑟𝑟 (𝐸𝐶𝑡𝑜𝑡𝑖

′
, 𝐸𝐶𝑡𝑜𝑡𝑗

′

) , (4) 

yielding the E.C. number occurrence distance. 

Cofactor usage distance A list of cofactors (KEGG br08001: 'Vitamins and Cofactors': 'Cofactors': 

'Coenzymes') was obtained from KEGG and translated to MNXref name space [15] for the different 

reconstruction approaches. First, the occurrence of every compound that classifies as a cofactor is 

calculated and scaled by the number of reactions in the respective reconstruction. The distance is 

then obtained in a similar way as in Eq. 4 by calculating the Spearman's rank correlation of the 

resulting vectors. 

Correlation of distance measures to sequence dissimilarity 

The distance matrices 𝐷 obtained using the above-described methods were compared to the 

respective sequence dissimilarity distance matrix 𝑆𝑗 extracted from the Newick tree for each habitat 

𝑗. The similarity of each pair 𝐷𝑖 and 𝑆𝑗 was calculated using the Mantel coefficient [16]. 

𝑟𝑀 =
𝑡𝑟𝑎𝑐𝑒(𝐷𝑖

′𝑆𝑗
′𝑇

)

√𝑡𝑟𝑎𝑐𝑒(𝐷𝑖
′𝐷𝑖

′𝑇
) ⋅  𝑡𝑟𝑎𝑐𝑒(𝑆𝑗

′𝑆𝑗
′𝑇

)  

, (5)
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with 𝐷𝑖
′ =  𝐷𝑖 − 𝑑𝑖𝐸 and 𝑆𝑗

′ =  𝑆𝑗 −  𝑠𝑗𝐸 . The variables 𝑑𝑖 and 𝑠𝑖 are the means of the off-diagonal 

elements in 𝐷𝑖 and 𝑆𝑗, respectively, and 𝐸 is a matrix of all ones. 

Consensus generation 

The merging of reconstructions was done in a step-wise process by starting with the first 

reconstruction as the initial consensus reconstruction and subsequently comparing the following 

reconstructions to it: First, the union of all fields is built. Gene identifiers are then compared to the 

consensus, adding previously unseen genes if necessary. Metabolites are unified in the third step, 

based on identity of identifiers as the MetaNetX database already matches metabolites based on 

their structure. The fourth step comprises pairwise comparison of reactions on the basis of 

identifiers, metabolite composition, mass-balance, reversibility (with preference of irreversible 

reactions), directionality (distinguishing forward and backward direction of the same reaction), and 

similarity of gene rules. Cosine similarity 𝐶 served as a first measure to determine which reactions 

to compare (𝐶 ≥  0.9). Reaction pairs with 0.9 ≤ |𝐶| < 1 were additionally tested for missing 

metabolites and protons, preferring the usage of metabolites in MNXref namespace and inclusion 

of mass- and charge-balanced reactions. In the case that two reactions have opposite directions, 

both are kept in the consensus reconstruction. If two reactions are indistinguishable, the reaction 

that is already contained in the consensus is kept, while the second is discarded. In case both 

compared reactions are not mass-balanced, the corresponding mass-balanced database reaction 

is added. The similarity of gene rules is calculated as the product of Jaccard indices of genes and 

operators. Duplicated reactions are deleted but gene rules of both reactions were merged if not 

identical. 
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Full COMMIT procedure 

 

 

Pseudocode 

Input 

Set of 𝑘 models 𝐺 

initial gap-filling medium 𝑀𝑔𝑓 

auxotrophic media for each community member 𝑀𝑎𝑢𝑥 

reference database 𝐷𝐵 

number of iterations 𝑛 

Output: 

gap-filled metabolic models 𝐺𝐹 

list of exchanged metabolites 𝐸𝑋 

optimal gap filling order 𝑔𝑓_𝑜𝑟𝑑𝑒𝑟 

 

initialize(𝐺𝐹, 𝐸𝑋, 𝑔𝑓, 𝑒𝑥𝑐, 𝑏𝑖𝑜)  

 

for 𝒊 from 1 to 𝒏 do: 

 𝑆𝑖  ← randomOrdering(𝑘) 

𝑃 ← ∅  

 𝑀 ← 𝑀𝑎𝑢𝑥,𝑆𝑖1
 

for 𝒋 from 1 to 𝒌 do: 

 𝐺𝐹𝑗 = condFastGapFilling(𝐺[𝑆𝑖𝑗],  𝑀,  𝐷𝐵 ∪  𝐸𝑋) 

  𝑃 = findPotentialExcMets(𝐺𝐹𝑖𝑗) ∖ 𝑀 

𝐸𝑋 =  𝐸𝑋 ∪ 𝑃   

𝑒𝑥𝑐𝑖𝑗 = |𝑃|  

  𝑏𝑖𝑜𝑖𝑗 = FBA(𝐺𝐹𝑗) // find optimal biomass flux 

  𝑔𝑓𝑖𝑗 = ReactionNumber(𝐺𝐹𝑖𝑗) − ReactionNumber(𝐺𝑖𝑗) 

  𝑀 ← 𝑀𝑔𝑓 

end 

𝑑𝑒𝑝𝑖 = |𝑀𝑎𝑢𝑥,𝑆𝑖1
∩ 𝑃| ⋅ |𝑀𝑎𝑢𝑥,𝑆𝑖1

|
−1

  

end 

𝑔𝑓 = ∑ 𝑔𝑓𝑖 .𝑛
𝑖   

𝑏𝑖𝑜 = ∑ 𝑏𝑖𝑜𝑖.
𝑛
𝑖   

𝑒𝑥𝑐 = ∑ 𝑒𝑥𝑐𝑖.
𝑛
𝑖   

𝑔𝑓_𝑜𝑟𝑑𝑒𝑟 = min
𝑔𝑓,−𝑑𝑒𝑝,−𝑏𝑖𝑜,−𝑒𝑥𝑐

𝑆  

 

The inner loop is repeated with 𝑔𝑓_𝑜𝑟𝑑𝑒𝑟  
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1. Generate 𝑛 random orderings (if no ordering was given) 

2. After each gap filling, extend the set of potential exchanged metabolites that can be added 

during gap filling 

3. The best ordering is determined as follows: Find the best solution by first considering 

orderings that minimize the number of added reactions. Next, the set of orderings is 

narrowed down iteratively until only one ‘optimal’ ordering remains. To this end, the 

following criteria have been considered one after the other: maximum dependency of the 

first model on the exported metabolites of subsequent models, maximum number of 

exchanged metabolites, and maximum sum of biomass fluxes. If there exist multiple 

ordering that are ‘optimal’ with respect to these criteria, one of them is selected at random. 

4. Gap-fill the reconstructions in the optimal order with respect to the criteria described above. 
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Table A. Abundances and numbers of exchanged metabolites of all models in the Schlaeppi 

community. The abundances were summed up between the environmental samples investigated 

in the study after normalization [17]. The numbers of imported and exported metabolites are given 

as their set difference to the medium. Further, only highly-permeable metabolites were considered, 

respectively. 

OTU ID Abundance Export Import 

Soil522 143     58      1 

Soil531 1199     79      2 

Soil535 11     66      4 

Soil538 79     84      3 

Soil724D2 13     68      3 

Soil736 45     68     15 

Soil745 747     78      2 

Soil748 16     59      3 

Soil750 4     60      3 

Soil761 10     61      2 

Soil762 1     68      3 

Soil763 2     64      3 

Soil764 16     69      2 

Soil768D1 487     73      5 

Soil772 40     53      3 

Soil773 4     49      4 

Soil774 649     61      3 

Soil777 41     75      1 

Soil782 3     64      2 

Soil787 30     65      3 

Soil796 69     65      5 

Soil802 194     60      3 

Soil809 86     51      3 

Soil810 824     59      3 
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Table B. Abundances and numbers of exchanged metabolites of all models in the Bulgarelli 

community. The abundances were summed up between the environmental samples investigated 

in the study after normalization [18]. The numbers of imported and exported metabolites are given 

as their set difference to the medium. Further, only highly-permeable metabolites were considered. 

OTU ID Abundance Export Import 

Soil522 19     62 1 

Soil531 25     80      2 

Soil535 6     68      3 

Soil538 18     84      3 

Soil724D2 5     68      2 

Soil728 33     54      2 

Soil736 8     76      3 

Soil745 12     79      0 

Soil748 6     67      4 

Soil750 10     60      3 

Soil768D1 26     70      2 

Soil772 6     46     14 

Soil773 2     49      4 

Soil774 245     61      2 

Soil777 9     67      2 

Soil787 3     65      3 

Soil796 36     65      2 

Soil802 227     59      4 

Soil809 8     52      2 

Soil810 80     61      2 
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Table C. Minimal medium used for gap filling. Medium, which has been used for conditional and 

individual gap filling of the metabolic reconstructions used in this study. It is composed of nutrients 

that were predicted as required by all models used in both communities. 

MetaNetX ID   Metabolite name  

MNXM2   H2O  

MNXM11   diphosphate  

MNXM95120   iron  

MNXM41   D-glucose  

MNXM2255   Mn(2+)  

MNXM149   Zn(2+)  

MNXM632   Cu(2+)  

MNXM128   Ca(2+)  

MNXM89   sulfur  

MNXM43   chloride  

MNXM304   biotin  

MNXM531993   Molybdenum  

MNXM90960   Co(2+)  

MNXM95   K(+)  

MNXM3673   Ni(2+)  

MNXM653   Mg(2+)  

MNXM27   Na(+)  

MNXM4505   Cd(2+)  

MNXM19009   Pb  

MNXM161163   sodium  

MNXM160440   potassium  

MNXM160414   dipotassium  

MNXM161213   sodium  

MNXM43229   Ba(2+)  

MNXM82680   Sr(2+)  

MNXM88705   vanadium(5+)  

MNXM90852   Methylcobalamin  

MNXM157678   magnesium  

MNXM161119   sodium  

MNXM152150   aluminium(3+)  
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MNXM160410   potassium  

MNXM153069   calcium  
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Table D. Quality assessment using the MEMOTE test suite [19]. Unfortunately, we were not 
able to obtain memote scores for RAVEN 2.0 reconstructions. 

Approach Model ID 
Total 
score 

Consistency 
score 

Unbounded Flux in Default Medium 

AuReMe/Pathway 
Tools 

Leaf183 18 35 100 

 Leaf210 18 34 100 

 Leaf245 34 76 100 

 Leaf291 18 34 100 

 Leaf363 17 32 100 

 Leaf399 34 75 100 

 Leaf9 17 32 100 

 Root553 18 35 100 

 Root635 33 73 100 

 Root83 18 35 100 

CarveMe Leaf154 16 33 30.3 

 Leaf8 17 33 23.8 

 Root170 15 29 57.9 

 Root280D1 16 32 32.3 

 Root322 15 30 48 

 Root53 16 31 38.4 

 Root9 16 31 44.5 

 Root901 16 31 41.9 

 Soil728 16 31 42.1 

 Soil809 16 32 34 

KBase Leaf159 36 71 97.5 

 Leaf186 36 71 95.5 

 Leaf222 36 71 95.9 

 Leaf233 35 71 98 

 Leaf394 36 73 84.8 

 Root241 36 72 92.3 

 Root418 36 71 95.2 

 Root420 36 72 88 

 Root554 36 72 94.5 

 Root73 36 72 89.8 

Consensus 
(Schlaeppi) 

Soill522 34 43 70.2 

 Soil531 34 43 73.9 

 Soil535 35 44 65.1 

 Soil538 34 42 75.9 

 Soil724D2 34 43 67.9 

 Soil736 35 44 66.1 

 Soil745 34 43 70.9 

 Soil748 35 44 66.8 

 Soil750 34 42 75.1 

 Soil761 35 44 65.8 

 Soil762 35 44 65.7 
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 Soil763 35 44 66.1 

 Soil764 35 45 61.9 

 Soil768D1 34 42 74.2 

 Soil772 35 44 63.3 

 Soil773 35 44 61.7 

 Soil774 35 44 63.1 

 Soil777 34 43 71 

 Soil782 35 44 63.2 

 Soil787 34 43 67.1 

 Soil796 34 43 70.8 

 Soil802 35 44 62.7 

 Soil809 35 44 63.8 

 Soil810 35 44 63.2 



 

 

12 

 

Table E. ChEBI metabolite ontology enrichment of the highly-permeable metabolites in the 

gap-filling database. An enrichment analysis of ChEBI metabolite ontology terms was used to 

compare metabolites, which have been predicted to be highly permeable were compared to all 

metabolites in the gap-filling database. The p-values have been corrected for multiple testing using 

the Benjamini-Hochberg procedure. The terms are further sorted by their occurrence in the highly-

permeable metabolite set. 

ChEBI ID Ontology adjusted p-value 

36587  organic oxo compound  7.3 ⋅ 10−4  

36586   carbonyl compound  4.2 ⋅ 10−4  

25696   organic anion  4.2 ⋅ 10−9  

33273   polyatomic anion  3.3 ⋅ 10−6  

25741   oxide  3.3 ⋅ 10−6  

35406   oxoanion  3.7 ⋅ 10−5  

24913   isoprenoid  7.2 ⋅ 10−5  

17087   ketone  3.9 ⋅ 10−5  

29067   carboxylic acid anion  3.1 ⋅ 10−5  

26873   terpenoid  1.1 ⋅ 10−4  

3992   cyclic ketone  1.4 ⋅ 10−4  

35757   monocarboxylic acid anion  2.4 ⋅ 10−4  

35381   monosaccharide  1.8 ⋅ 10−4  

25901   pentose  9.2 ⋅ 10−4  

63944   macrocyclic lactone  6.2 ⋅ 10−5  

26188   polyketide  6.2 ⋅ 10−5  

36401   cycloalkadiene  4.0 ⋅ 10−4  

136889   5beta steroid  4.0 ⋅ 10−4  

26872   terpene ketone  0  

23849   diterpenoid  0  

22195   acetyl-amino acid  0  

28965   dicarboxylic acid dianion  0  

77636   fatty acyl-CoA(4-)  0  

132539   fatty acid 20:4  0  

37613   cyclohexadiene  0  

24973   ketohexose  0  

33257   secondary amide  0  

33760   hexonate  0  
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82830   sphingosine-based sphingolipid  0  

23449   cyclic peptide  0  

19260   2'-deoxyribonucleotide  0  

37016  2'-deoxyribonucleoside 5'-phosphate 0 

61940   aroyl-CoA  0  

61912   branched-chain fatty acyl-CoA  0  

37015   ribonucleoside 5'-phosphate  0  

24971   ketohexose monophosphate  0  

19257   2'-deoxyribonucleoside monophosphate  0  

26392   purine nucleoside monophosphate  0  

26438   pyrimidine nucleoside monophosphate  0  

26558   ribonucleoside monophosphate  0  

26441   pyrimidine nucleotide  0  

22080   TDP-sugar  0  

22290   aldaric acid  0  

63437   aldaric acid derivative  0  

36520   oligoglycosylceramide  0  

36498   galactosylceramide  0  

35746   fatty aldehyde  0  

66873   C4-dicarboxylic acid  0  

48847   heterocyclic fatty acid  0  

140345   hydroxy polyunsaturated fatty acid  0  

15904   long-chain fatty acid  0  

23931   epoxy monocarboxylic acid  0  

24727   hydroxynaphthalene  0  

17522   alditol  0  

23229   chromanol  0  

33666   polycyclic hydrocarbon  0  

33581   boron group molecular entity  0  

27024   toluenes  0  

22580   anthraquinone  0  

26144   piperazines  0  

48901   thiazoles  0  

24156   galactosamine  0 
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