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1 Responses characteristics of non-selected neurons 2

Neurons with responses above 0.2 to less than 50 stimuli in the dataset were discarded 3

and not used for modeling. In the main paper we claim that the discarded neurons tend 4

to have low responses to all stimuli, rather than being very sharply tuned. In Fig 1, we 5

plot a histogram for each monkey of all its neurons’ average response to their top 5 6

stimuli, a measure of their peak response, split by inclusion for modeling. The 7

non-modeled neurons in blue, which do not pass the threshold of 50 df/f > 0.2 8

responses, clearly tend to have substantially lower responses than the modeled neurons. 9

Thus, the neurons we discarded tend not to have very high response peaks. However, we 10

found that when all the cells are used, the relative performance of all the models, and 11

thus the conclusion of the paper remain the same. 12

Fig 1. Histograms of top response values: For each monkey, we plot a histogram
of its neurons’ average response to the top 5 stimuli. We color the populations above
(red) and below (blue) the threshold used for inclusion the main modeling results.
Neurons below the threshold are much more likely to have a low response even to their
most favored stimuli; that is, to not respond strongly to any stimuli. Note that the
y-axis represents density—the count of below-threshold neurons is substantially lower
than the count above threshold.

2 Frequency spectrum of GCNN and KFCNN 13

kernels 14

The Gabor wavelet codes (used as GCNN kernels) and the complex-shaped sparse codes 15

(used as FKCNN kernels) have similar coverage in the spatial frequency domain. We 16

evaluate the similarity of the coverage by the percentage overlap of the two 2D power 17

spectra, as well as the percentage in the overlap in the spectra in the frequency and the 18

orientation dimensions. 19

The percentage overlap of the two power spectra is the ratio between the shared 20

volume (Intersection) and the total volume (Union) of the two spectra. In 1D, it is the 21

ratio between the intersection and the union of areas under the two curves. While the 22

Gabor representation tiles the orientation and frequency domain more uniformly, the 23

tiling of the complex-shape features will have some irregularity in the spectrum. The 24

overlap of the 2D spectra is only 91%. However, when we average the power spectrum 25

across orientation or spatial frequency, collapsing the 2-D spectrum into two sets of 1D 26

spectra, we find the overlaps are 96% in the spatial frequency dimension and 95% in the 27

orientation dimension, as shown in Fig 2. Thus, we consider the spectral coverage highly 28

similar in both the spatial radial frequency and orientation dimensions. 29
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Fig 2. Frequency spectrum of GCNN kernels and FKCNN kernels. The
image on the left shows the similarity between two model kernels’ frequency spectrum
along the radius distance dimension. The image on the left shows the similarity between
two model kernels’ frequency spectrum along the orientation dimension. The power on
y-axis is first min-max normalized and then average.

3 Additional validation on synthetic data using 30

pattern stimulus 31

In Section “Quantitative Evaluation of the Methods. Synthetic data validation” of the 32

main paper, we test the validity of the improved methods using synthetic neurons and 33

Gaussian white-noise images. To have more insight on these methods, we conduct the 34

same experiment using synthetic neurons and the pattern stimulus. 35

Specifically, The synthetic neurons are modeled as the nonlinear transform of one or 36

the sum of multiple linear filter outputs. We choose the ReLU activation function as our 37

nonlinear transform because previous work found that all activation functions behave 38

essentially the same [1]. Then, they are stimulated by the set of 9500 pattern images (20 39

x 20 pixels), and the response is given by the following linear-nonlinear model, as 40

described by Equation 1. This is a common ground truth evaluation method, also used 41

by [2, 3]. 42

yi =
∑
s∈S

ReLU(Ii · s) + η (1)

where · denotes the inner dot product between the input image and the artificial RF s; 43

ReLU is the rectified linear unit function that maps negative values to 0; η represents 44

Gaussian noise with zero mean and variance equal to
√
Ii·s
10 ; the set of artificial RFs S is 45

a subset of 9× 9 filters padded with zeros in the surrounding to make them the same 46

size as the input stimulus (20× 20). We select S either from our learned sparse codes or 47

cropped patches of our pattern stimuli. We train the models with 7000 samples of the 48

pattern stimulus until convergence, 1500 stimulus as validation set for hyper-parameter 49

tuning, and then test them with the rest 1000 stimulus. 50

The performance of the different methods in this validation experiment with pattern 51

stimuli is shown in Fig 3. The patterns of behaviors are very similar to Fig 6 in the 52

main paper, except the overall performance level is reduced. The performance of the 53

methods using pattern stimuli might impose an upper bound performance that a model 54

can achieve on this set of stimuli. The performance of the methods on V1 neurons of 55

monkey E (shown in Fig 3) using this set of pattern stimuli is actually very close to this 56

bound. This might suggest that the models are already doing the best they can on this 57

set of stimuli. 58
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Fig 3. Model performance on artificial dataset with pattern stimulus

To evaluate whether the pattern stimuli can bias inferred RF subcomponents more 59

than Gaussian white noise, we conducted the following additional experiments for 60

CMPR and FKCNN. We used each of the 24 sparse coding kernels as the ground-truth 61

RF of artificial neurons and compare how well CMPR and FKCNN can recover this 62

kernel using the pattern stimuli versus the Gaussian white-noise stimuli. We run this 63

experiment 50 times with different set of training stimuli (i.e. different seeding for 64

random training set split). We found (1) CMPR can correctly select the true kernel 65

100% times using Gaussian white-noise stimuli but only 61.2% times using pattern 66

stimuli. (2) For each FKCNN model, FKCNN found the correct kernel among the top 67

five kernels based on importance 58.4% of the time, when Gaussian white noise was 68

used, but 47.9% of the time when pattern data are used (shown in Fig 4). Taken 69

together, the pattern stimuli can bias inferred RF subcomponents more than the 70

Gaussian white noise. The bias due to pattern data might be very important for CMPR 71

but less important for FKCNN. 72

Fig 4. Comparing the consistency of how well FKCNN can recover
receptive fields on white noise and pattern stimulus.

In addition, the subcomponents recovered by FKCNN should be considered as the 73

basis that span the space of subcomponents that lead to the neurons’ responses, but 74

they are not unique. Nevertheless, they give us a glimpse of the stimulus patterns 75

contribute to the cells’ subcomponents. 76

These results reflect a key finding of Tang et al. (2018), that V1 neurons could be 77

highly selective to some higher order features. They often did not respond to an 78

oriented bar or grating, of any orientation, and their response to white noise stimuli 79

tend to be poor. That was the rationale of using 9500 plus pattern stimuli—the 80

hypothesis was to test whether V1 neurons are selective to some specific higher order 81

local features, rather than being simple edge detectors. FKCNN or CMPR, regardless of 82

whether white noise or pattern stimuli are used, are limited in that they tend to recover 83

the general preference of the neurons rather than the local patterns they truly love. 84
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Subsequent to our study, an iterative technique called the inception loop [4] has been 85

developed to probe the optimal tuning of V1 neurons in mice and found comparable 86

complexity in tuning. 87

4 HO neurons’ preferred stimuli 88

Fig 5. For 32 example neurons classified as having higher-order tuning, the
most preferred stimulus.

Fig 5 shows the top stimuli for 32 example V1 neurons classified as HO by the 89

method described in the paper (previously, in [1, 5]). They are more complicated than 90

simple oriented bars, and can be compared to the filters obtained by convolutional 91

sparse coding in Fig 2 of the main paper, with similar features like corners, curves, and 92

crossing lines. 93

5 Alternative model front-ends 94

In order to further assess the suitability of the overcomplete convolutional sparse code 95

basis for use in FKCNNs, we tested two other candidate bases, in additional to it and 96

the Gabor wavelet bases. These are a set of Gabor-like filters obtained through classic 97

sparse coding [6], and a set of filters from the object recognition-trained AlexNet 98

CNN [7]. The AlexNet filters are averaged across the three color channels of the original 99

model. The full set of 64 filters for each alternative basis is shown in Fig 6, but to in 100

our models we only used 24 of these kernels for each basis (randomly sampled, with 101

similar performance across multiple samples). The performance of each frontend, 102

including the ones in the main paper, for each monkey is shown in Table 1. 103

Complex-Shaped Gabor wavelets Gaborlike Sparse Codes AlexNet
Monkey A 0.453 0.377 0.372 0.378
Monkey E 0.590 0.484 0.500 0.518

Table 1. Average CNN model performance with different frontends.

The convolutional sparse code basis continues to outperform the new ones, with the 104

differences shown being significant at the α = 0.05 level (marked as ”+” in Table 1 of 105

the main paper). This supports our claims that this basis is particularly good for 106

predicting neural responses, as it outperforms these other reasonable candidate bases, 107

though we cannot claim that no better basis exists. 108
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Fig 6. The filters of the AlexNet (left) and Gabor-like (right) alternative
FKCNN bases.

6 Natural stimulus dataset 109

6.1 Receptive field characterization using a natural image 110

dataset 111

The pattern stimulus set used in this study is biased in two aspects: First, it contains 112

higher-order features at a higher rate than they would normally occur in natural images, 113

even though it also contains a large number (1600) of oriented lines, edges and grating 114

of different length, width, end-point, orientation parameters. Second, it is possible that 115

certain features in natural scenes that neurons care about might not be in the stimulus 116

set. Neurons coding for that features might not respond well at all. To assess the 117

impact of these biases, particularly the first one, on receptive field characterization by 118

our methods, we examined a set of neurons in one of the monkeys (Monkey A) that 119

were also tested with 2250 natural images, each presented in a 4 DVA square aperture 120

over the receptive fields which are typically 0.5-1.0 DVA in size, as reported in another 121

paper [8]. The two experiments (pattern vs natural images) were performed a week 122

apart apart, but 364 neurons can still be associated across the twp data sets, based on 123

anatomical landmarks in the imaging data, and meet the response requirements on the 124

pattern stimuli described in the main paper (primarily, at least 50 stimuli with a 125

trial-averaged response greater than 0.2). For direct and fair comparison, we trained 126

exactly the same FKCNN, GCNN, and CMPR models on these neurons’ responses to 127

the natural stimuli in the same way and with exactly the same models as described in 128

the main paper for the pattern stimuli, and evaluate two quantitative metrics 129

concerning HO and OT neurons characterization. 130

Model Performance
Pattern stimuli Natural image stimuli

FKCNN 0.453 0.215
GCNN 0.377 0.197

Table 2. Predictive performance of each CNN kernel set on the natural
image stimuli and pattern stimuli for Monkey A. Performance is substantially
higher for the responses to pattern stimuli.

The predictive performance of the FKCNN and GCNN for natural images is 131

significantly lower for this set of data than for the artificial stimuli, as shown in Table 2. 132

This could be due to many factors: (1) natural stimuli are more complex; (2) each 133
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Fig 7. Histogram of FKCNN-GCNN score differences for HO and OT
neurons with models trained on the natural stimuli. Compared to the
results on the pattern data in Fig 10 of the main paper, the separability of
the cell classes is visibly lower. Quantitatively, the linear separability of
the cell classes is 57%, essentially identical to chance (also 57%) on this
subset of neurons.

stimulus was only tested in 3 trials, leading to a noisier average response; (3) stimulus 134

size is at least 4 times larger than the receptive field and thus nonlinear contextual 135

surround effects could contribute to the high sparsity in the neurons’ response, etc. 136

Given the complexity of natural images, a deeper network is usually required for natural 137

images. However, for this dataset, because of the sparsity in response and data size, 138

even a deeper network does not yield considerable better results. Nevertheless, one 139

encouraging observation is that the predictive performance of the FKCNN is 10% better 140

than GCNN (0.215 versus 0.197), a similar, but smaller gap than the models trained on 141

the pattern stimuli (10% compared to 15% relative to the GCNN). This supports our 142

main claim made based on the artificial data. 143

Secondly, we also compared the top kernels yielded by the CMPR method. While OT 144

kernels are recovered as the top kernels for a majority of the OT neurons for both sets 145

of stimuli, OT kernels are selected as the top kernels for only 31.4% of the HO neurons 146

based on pattern stimuli, but 78.7% of the same neurons based on natural image stimuli, 147

representing a 150% relative increase. This suggests that the CMPR method trained on 148

natural stimuli tends to identify simple oriented edge filters as the top kernels even for 149

HO neurons, in contrast to its behavior on the pattern stimuli. As we discussed in the 150

paper, the kernels recovered by the FKCNN are not unique—different subsets of the 151

dictionary, and different combination of the kernels of the same subsets, or even ”noisy” 152

kernels recovered by standard CNNs can be used to compose a receptive field model to 153

yield reasonable prediction performance. This is because the kernels are simply a basis 154

for spanning the stimulus-response space of a receptive field. Characterizing and 155

comparing the stimulus-response manifolds is difficult that requires considerable further 156

research effort. We can visualize the receptive fields of the neurons based on pattern 157

stimuli as done in [1] for the baseline CNN, but we fail to visualize the receptive fields 158

of the models based on natural image data, likely because of the neural responses to the 159

natural images are too sparse, resulting in poor regression-based models. 160

Thirdly, we evaluated the FKCNN-based metric (differences between FKCNN and 161

GCNN model performance) for the OT and HO populations based on natural images. 162

While Fig 10 of the main paper, based on pattern stimuli, shows a clear distinction in 163
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this metric between the two groups of neurons, Fig 7 here shows that HO and OT 164

neurons cannot be distinguished based on this metric derived from the responses to 165

natural stimuli. 166

It is important to note that we are not claiming artificial stimuli are better than 167

natural stimuli for characterizing neurons. The artificial stimuli could be better than 168

natural images for probing receptive fields only when data are limited. When the data 169

available in the natural image data-set are sufficiently large, we expect natural image 170

should provide more complete and accurate characterization of the neurons’ transfer 171

functions, particularly when used with a deeper network. 172
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