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Supporting Information

Details on intracellular branching processes

We distinguish two cases, constant or Poisson amplification, for the two processes are
slightly different. We remind that Xn is a random variable following the total number
of episomes in all infected stem cells. Conditioned on the absence of symmetric cell
divisions, we model the variation of Xn over time as a Bienaymé-Galton-Watson (BGW)
branching process defined by the following recurrence relation, for all n P N

Xn`1 “

Xn
ÿ

i“1

ξi (1)

where ξi “ ξ are independent and identically distributed random variables modeling
the offspring number of a single individual within a generation.

Dirac episome multiplication In this case, each episomes distributed to the
daughter stem cell gives exactly λ new episomes then dies, so the random variable ξ can
be written as

ξ “

#

0 with probability 1´ p

λ with probability p
(2)

Hence we deduce the associated probability generating function (PGF) gpzq, z P r0, 1s:

gpzq “
8
ÿ

k“0

Prξ “ ks zk “ 1´ p` p zλ (3)

Following classical results on BGW branching processes [1],
PrX8 “ 0|X0 “ 1s “ pext is the smallest fixed point of the PGF on the interval
z P r0, 1s:

pext “ inftz P r0, 1s, gpzq “ zu

One can show that if m “ g1p1q “ λ p ď 1, the average number of viral copies produced
by one episome between each iteration, then pext “ 1. If m ą 1 one must solve the
following polynomial equation to find pext
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1´ p´ z ` pzλ “ 0 (4)

For λ P t2, 3u, such solutions are trivial but for higher value of λ, the solution
becomes intractable. The S5 Fig shows the variation of extinction probability with the
parameters λ and p.

Poisson episome multiplication We now assume that upon division, each episome
dies and gives ρ descendants, where ρ is a random variable following a Poisson
distribution, Poissonpλq. Hence the distribution of ξ follows:

Prξ “ ks “ 1tk“0up1´ pq ` pPλpkq (5)

where Pλpkq is the probability mass function of the Poisson distribution Poissonpλq.
The PGF associated with such process is

gpzq “ 1´ p` p eλpz´1q (6)

Similarly to the previous case, if m “ λ p ď 1, the probability of extinction is equal
to 1, else this probability is lower than 1. Let W be the Lambert function defined as the
inverse function of z ÞÑ zez. If m ą 1 we have

pext “
´W p´λ p e´λ pq ` λ p1´ pq

λ
(7)

The sensitivity of pext with the parameters λ and p are displayed in figure 2.
Between the two cases, there are few differences, except for the low value of λ where
Pλp0q is non-negligible, hence favoring extinction compared to the Dirac case. We
numerically checked our model converges to theoretical predictions. We display some
results in S3 Fig. For the majority of the sets, the probability of extinction in our model
does converge to numerical predictions. For some values, our model show higher values
of pext, this notably happens when the intrahost capacity (C) and/or the regime is
slightly supercritical. Theoretical predictions rely on the assumption the process might
reach infinity. We diverge from this assumption when we constrain the intrahost
capacity. Such constrain assure an asymptomatic probability of extinction equal to 1
even if the regime is supercritical. Yet, the time to extinction is increasing rapidly with
C. Hence on our time interval of 3 years, in most cases, this phenomenon plays a
negligible role.

Intracellular dynamics: amplification step prior to distribution
step

Assume we reverse the two steps of the intracellular described in the
“Methods”subsection. Upon division, the episomes are first amplified before being
distributed in the two daughter cells. If we put the time origin just after the first
amplification phase, we notice we are back in the scenario where the distribution of the
viral copies occurs before the amplification phase. Therefore we deduce that a process
starting with the amplification phase is equivalent to the same process starting with the
distribution step and extra initial viral copies. From classical results on BGW branching
process, we have the following results, for all ν P N˚:
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PrX8 “ 0|X0 “ νs “ pPrX8 “ 0|X0 “ 1sq
ν

(8)

Let pDext be the probability of extinction when the intracellular process starts with
the distribution step and pAext the probability of extinction when it begins with the
amplification phase. For all λ P N we hence have:

`

pDext

˘λ
“ pAext (9)

Detail on the probability of extinction in the symmetric division
case.

We remind the inter-cellular process is modeled using the following discrete BGW
branching process. Let Γn be the random variable describing the total number of
infected stem cells at time n P N. We note by rΓn the random variable describing the
dynamic of infected stem cells when the number of episomes in each stem cell is equal to
8 (i.e. when omitting intracellular stochasticity). This variable is defined by the
following recurrence relation:

rΓn`1 “

rΓn
ÿ

i“1

φi (10)

where φi “ φ are independent and identically distributed random variables modeling
the offspring number of a single infected cell within a generation. From equation 2 we
can characterized φ as follow

φ “

$

’

&

’

%

2 with probability s

0 with probability r

1 with probability 1´ r ´ s

(11)

For all z P r0, 1s, the PGF hpzq associated to this reproduction law is defined as:

h : z Ñ r ` p1´ r ´ sq z ` s z2 (12)

We deduced that the average number of stem cell produced by each dividing stem
cell is equal to m “ 1´ r ` s. The probability of extinction pext follows

pext “ inftz P r0, 1s, hpzq “ zu (13)

In this case the results is straightforward and pext is the smaller roots of the
polynomial equation

r ´ pr ` sq z ` s z2 “ 0, z P r0, 1s (14)

Hence we deduced pext “ mint rs , 1u. We checked numerically our model converges
the theoretical predictions and displayed some results in S4 Fig.
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Lower bound of the probability of extinction

We remind that Γn (resp. rΓn) is the random variable describing the dynamic of infected
stem cells over time in the general framework (resp. in the absence of intracellular

stochasticity) at time n and X
pkq
n the random variable characterizing the number of

viral copies in lineage k at time n. We can write that:

PrΓn`1 “ 0|Γn “ αs “PrrΓn`1 “ 0|rΓn “ αs` (15)

α
ÿ

i“1

PrrΓn`1 “ i|rΓn “ αs ˆ
i
ÿ

k“1

PrXpkqn`1 “ 0|Xpkqn ą 0s (16)

PrΓn`1 “ 0|Γn “ αs ěPrrΓn`1 “ 0|rΓn “ αs (17)

This relation holds for all n P N, thus we deduce that

PrX8 “ 0|Γ0 “ 1s ě min
´r

s
, 1
¯

(18)

.

Parameters generations using LHS

We generate two matrices of parameters using R package “lhs” [2]. This package
generates matrices M “ pmi,jqp1ďiďn,1ďjďkq where

0 ď mi,j ď 1 ; 1 ď i ď n, 1 ď j ď k (19)

As most of our parameters are defined outside of I “ r0, 1s, we modify pmi,jsq so that
we get meaningful results regarding the parameter support. Let raj , bjs be the definition
domain of variable j, aj ď bj , then the value of parameter j for the i-th set, Si,j is

Si,j “ aj `mi,jpbj ´ ajq (20)

When variable j is an integer we rounded up Si,j . For the categorical variable
describing the intracellular amplification regime (Dirac or Poisson distributed), we split
the sampling space in two half: we assign the Fixed multiplication regime when
pmi,jq ă 0.5 and the Poisson regime otherwise. See Table 1 for more details on the
domain of definition of numerical variables. Additionally we set the upper bound for λ
and N0 to 10.

Annotation of infected cell lineages

Similarly to phylogeny, our process viewed from the infected stem cell perspective, can
be visualized as a tree whose origin is the first infected cell. As long as the cells
descending from that first infected cell divide asymmetrically, we remain on the same
branch: we group such cells in a cell lineage. The moment, a stem cell divides
symmetrically in two stem cells, the tree is split into two new branches that follow the
same process independently. When a symmetric divisions into two differentiated cells
occurs, we stop the branch. To track each branch we use the following notations.

i) The first cell lineage is labeled O.

ii) The two daughter stem cells are labeled L and R from its parent cell point of view.
To distinguish them from other stem cells in the tree, they are named as follow:
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• Take the parent’s name (usually the letter O followed by a succession of L or
R).

• Add the letter L or R to the parent’s name.

For instance the two new stem cells lineage descending from the initial infected stem
cell lineage are labeled OL and OR. Or, upon division, the stem cell lineage OLLR
gives two new stem cell lineages OLLRL and OLLRR. The choice of L or R is
random and have no influence on the rest of the process.

Simulation of our process

As the intracellular branching process is nested inside the inter-cellular branching
process, we first need to compute the underlying tree of infected cells, then simulate the
trajectories of the viral copies for each cell lineage (i.e. each branch) starting from the
origin. We simulated the tree and the different trajectories using Python v3.9.1+.

Determination of the inter-cellular tree

The branching process for the inter-cellular dynamic can be viewed as a discrete
birth-death process. Each individual, upon division, randomly takes one of the following
three paths: i) divide symmetrically in two differentiated cells (death) with probability
r ii) divide symmetrically in two stem cells (birth) with probability s iii) divide
asymmetrically (pursue its life) with probability 1´ r ´ s. Thus for each individual we
can compute the time of symmetric divisions as it follows geometric distribution
Geometricpr ` sq. Once the time of symmetric division is determined we randomly
assign of the two outcomes by drawing a random number from uniform distribution
Uniformpr0, 1sq: if this number is lower than r{pr ` sq then the division gives two
differentiated cells, otherwise the cell divides into two stem cells. We repeat this method
until all cells have divided into two differentiated cells or when the remaining cell
divisions time occur after a given threshold.

Intracellular dynamic for each branch

The intracellular branching process can also be consider as a Markov-chain. To simulate
the dynamic of a Markov-chain we rely on its associated stochastic Matrix
P “ pPi,jqpi,jqPN2 , where Pi,j “ PrX1 “ j|X0 “ is. Depending on the episomes
amplification regime (Fixed of Poisson - amplification or allocation phase first), the
matrix varies. We detail the matrix P for the Fixed and Poisson cases when allocation
occurs before amplification. We remind that when amplification occurs before
allocation, the results on the probabilities of extinction are similar to the result
obtained when the two phases are reversed raised to the power λ. First we explicit the
stochastic matrix in the Fixed case:

Pi,j “

$

’

’

&

’

’

%

Bippj{λq if j P λN ; j ď λ i ă C

1´
C´1
ř

k“0

Pi,k if j “ C

0 otherwise

(21)

We note by Bnp pxq the probability of drawing x individuals from a binomial
distribution Binomialpn, pq. If we now assume a Poissonian amplification regime with
distribution Poissonpλq, then for all pi, jq P N2:
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Pi,j “

$

’

’

’

’

&

’

’

’

’

%

i
ř

k“0

BippkqPλkpjq if j ă C

1´
C´1
ř

k“0

Pi,k if j “ C

0 otherwise

(22)

We note by Pnpkq the probability of drawing k individuals from a Poisson distribution
Poissonpnq. As the state 0 is included, P is squared matrix of size C ` 1ˆC ` 1. Given
the stochastic matrix P for all iteration n P N and i P J0, CK, we iteratively determine
the trajectory between two events of symmetric divisions by randomly choosing the next
value for iteration n` 1. We display an example of a random trajectory in S2 Fig.
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