
S3 Details on the synthetic cohort pipeline

We created a SSM from the CT cohort meshes. We created a pipeline ending with
viable meshes for EM simulations.

To create the SSM, we required every subject to be in the same physical space (i.e.,
to be rigidly aligned). First, we translated the 19 meshes so the middle point between
the mitral valve barycentre (MVB) and tricuspid valve barycentre (TV B) was in the
same spatial coordinates. We computed the most apical point in the RV septum (p).
We chose an arbitrary reference model and aligned the corresponding points MVB,
TV B and p of each model to those of the reference model. Note that we did not scaled
the models as is done in a Procrustes transformation such as in [1].

To avoid point-to-point correspondence, we chose to represent the surfaces as
currents [2] and embed them in a set of a regular grid of landmark points.

We computed an anatomical average shape (or atlas) using the Deformetrica
software and defined the shape variability with respect to the average shape [3, 4]. For
each heart, we extract its surface and represent it as deRham currents. We can
approximate the current of a triangulated surface by the set of points at the triangles
barycentres and the vectors with origin these centres and oriented along the triangle
normals (Dirac delta currents) [4].

Using the the Large Deformation Diffeomorphic Metric Mapping [2], the 3D shape
representations are compared through diffeomorphic transformations with the 3D space.
We set a representative mesh as an initial template and the identity function as the
initial transformation. For each shape, by applying a gradient descent algorithm, we
update the template and the deformations to minimise the distance between the
deformed template and the given shape as defined in Eq (13) in [5]. The distances
between currents are defined as in [3], involving a Gaussian kernel.

The deformation functions depend on a set of uniformly distributed control points in
which the shapes are embedded, and the deformation vectors attached to these points.
In contrast to deforming the mesh in a pointwise manner, this method deforms the
whole space where the meshes are, through the control points, see Fig A.

Fig A. Lateral, superior and basal view of the template mesh (represented as currents)
with the control points.

We performed a singular value decomposition on the matrix formed by the
deformation vectors defined as the difference between the control points of the average
mesh and the control points of each one of the meshes. This method provides us with
orthogonal bases or modes (analogous to eigenvectors) and variability explained by each
mode encoded in the corresponding eigenvalues.
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The result is that any patients’ heart can be described by the average mesh plus the
sum of the modes multiplied by the corresponding weights for a given patient. The
method provides a common set of modes (changes in shape) that can be used to
describe all cases and they reduce the complex shape with thousands of vertices down to
a limited set of scalar values that can encode each patient’s heart.

The number of components chosen to represent the data set expresses the trade-off
between model complexity and the amount of explained variability. The components are
the eigenvectors associated with the covariance matrix (constructed based on the data
set):
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1

N
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xix
T
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with N denoting the size of the data set and x being the samples. The greater the
eigenvalue associated to certain eigenvector, the more information is enclosed within the
vector. When normalised, eigenvalues denote the percentages of explained variability.

We transformed all the surface meshes to volumetric meshes to allow for finite
element simulations. The transformation was performed with parameters reflecting the
quality of the CT cohort meshes. Finally, we labelled the separate elements of the
meshes and merged them into single models.

We performed the rigid transformation of the meshes, surface extraction, splitting
the mesh into elements, labelling and merging using the VTK package [6] in Python.
We registered the meshes with Deformetrica software [7] and its atlas construction
module. We transformed from surface to volumetric meshes with gmsh [8].
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