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A Further theoretical analyses

A.1 Why inverse binomial sampling works
We start by showing that the inverse binomial sampling policy described in the Methods section of the main text,
combined with the estimator L̂ibs (Eq 14 in the main text), yields a uniformly unbiased estimate of log p. This
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derivation follows from [1, Theorem 4.1], adapted to our special case of estimating log p instead of an arbitrary
function f(p):
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The first equality is the definition of L̂ibs (Eq 14 in the main text), using the notational convention that
∑0
k=1 = 0.

In the second equality we introduce the indicator function 1k<K which is 1 when k < K and 0 otherwise. The
third equality follows by linearity of the expectation and the fourth directly from the definition of the indicator
function. The fifth and second-to last equality uses the formula for the cumulative distribution function of a
geometric variable, that is Pr(K ≤ k) = 1− (1− p)k, and thus Pr(k < K) = (1− p)k. The final equality is the
definition of the Taylor series of log p expanded around p = 1. Note that this series converges for all p ∈ (0, 1].

In the derivation above, we can replace 1
k by an arbitrary set of coefficients ak and show that

E

[
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]
=
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k=1

ak(1− p)k, (S2)

for all p for which the resulting Taylor series converges. Eq S2 immediately proves two corollaries. First, we can
use the inverse binomial sampling policy to estimate any analytic function of p. Second, since we can rewrite any
estimator L̂(K) as

∑K−1
k=1 ak, and since Taylor series are unique, ak = 1

k is the only choice for which E
[
L̂(K)

]

equals log p. In other words, L̂ibs is the only uniformly unbiased estimator of log p with the inverse sampling
policy. Therefore, it trivially is the uniformly minimum-variance unbiased estimator under this policy, since no
other unbiased estimator exist.

A.2 Analysis of bias of fixed sampling
We provide here a more formal analysis of the bias of fixed sampling. We initially consider the estimator L̂fixed
defined by Eq 11 in the main text, but we will see that our arguments hold generally for any estimator based on a
fixed sampling policy.

We showed in Fig 2 of the main text that in the regime of p→ 0, M →∞, while keeping pM → λ, the bias of
L̂fixed tends to a master curve. This follows since, in this limit, the binomial distribution Binom

(
λ
M ,M

)
converges

to a Poisson distribution Pois(λ) and therefore the bias converges to
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(S3)

which is the master curve in Fig 2 of the main text. In particular, the bias is close to zero for λ� 1 and it diverges
when λ� 1, or equivalently, for M � 1

p and M � 1
p , respectively.
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This asymptotic behavior is not a coincidence. In fact, it is mathematically guaranteed since the Fisher infor-
mation of Pois(λ) equals 1

λ and the reparametrization identity for the Fisher information yields If (log λ) = λ [2].
In the limit of p � 1

M , which corresponds to λ � 1, this Fisher information vanishes and the outcome of fixed
sampling simply provides zero information about log λ or log p. Therefore, any estimates of log p are not informed
by the data and instead are a function of the regularization chosen in the estimator L̂fixed (Eq 11 in the main text).
Note that the argument above does not invoke the specific form of the estimator, and therefore holds for any choice
of regularization.

We can express the problem with fixed sampling more clearly using Bayesian statistics, in a formal treatment
of the ‘gambling’ analogy we presented in the main text. The ‘correct’ belief about log λ given the outcome of
fixed sampling (m) is quantified by the posterior distribution p (log λ|m), which is a product of the likelihood
Pr (m|log λ) and a prior p(log λ). In the limit λ � 1, the Poisson distribution converges to a Kronecker delta
distribution concentrated on m = 0. In other words, almost surely none of the samples taken by the behavioral
model will match the participant’s response. When m = 0, the likelihood equals exp(−λ), which is mostly flat
(when considered as a function of log λ, see Fig S1) for log λ ∈ [−∞,−2] and therefore our posterior belief ought
to be dominated by the prior p(log λ) and become independent of the data. Therefore, we once again conclude that
in the limit p � 1

M , the fixed sampling policy provides no information to base an estimate of log p on, and it is
impossible to avoid bias.

-8 -6 -4 -2 0 2
log λ

0

0.5

1

P
r(
λ
|m

=
0)

Figure S1. Likelihood function for zero ‘hits’. Likelihood function of log λ given that fixed sampling returns
m = 0 (none of the samples from the model match the participant’s response). The likelihood is approximately flat
for all log λ ≤ −2. Since λ is defined as p

M , this implies that the posterior distribution over p will be dominated
by a prior rather than evidence, as quantified by the likelihood.

A.3 Derivation of IBS variance
In this section, we derive the expression for the variance of the IBS estimator (Eq 15 in the main text). We compute
the variance of L̂ibs starting from the identity
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]
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)2]
−
(
E
[
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])2
.

We already know the second term is equal to (log p)2, but for the purpose of this derivation, and for reasons that
will become clear later, we re-write it as

(
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In order to write this equation as a power series in 1 − p, we collect terms with the same exponent together.
Specifically, we re-index this double summation as a summation over all values of n and m + n (which we label
k), and substitute k − n for m.
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Note that in the second summation over n we only have to sum to n = k − 1 since m ≡ n− k has to be positive.
We can carry out the internal summation over n explicitly,
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The first equality is an algebraic manipulation, the second follows by symmetry and the final equality definesHk−1
as the (k − 1)-th harmonic number. Therefore, we find that
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To calculate E
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, we use a similar rationale as Eq S1,
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In these equations, 1 again denotes an indicator function, and we use the fact that the product of indicator functions
for two different events is the indicator function for the joint event. Additionally, we use that the eventm < K,n <
K is logically equivalent to max(m,n) < K. To write this double summation as a power series, we split it into
three parts: one where m < n, one where m = n and one where m > n. By symmetry, the first and last part are
equal, and we can write

E
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By re-arranging some terms, and using the fact that max(m,m) = m and max(m,n) = m for all n < m, we can
reduce this to
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We can now explicitly perform the summation over n in the second term and write

E
[(
L̂ibs

)2]
=

∞∑

m=1

1

m2
(1− p)m + 2

∞∑

m=1

Hm−1

m
(1− p)m.



5

Finally, putting everything together, we obtain
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A.4 Estimator variance and information inequality
We proved in Section A.1 that L̂IBS is the minimum-variance unbiased estimator of log p given the inverse binomial
sampling policy. Here we show that the estimator also comes close to saturating the information inequality, the
analogue of a Cramer-Ráo bound for an arbitrary function f(p) and a non-fixed sampling policy [1],

Std(f̂ |p) ≥
√
p(1− p)
E [K|p])

∣∣∣∣
df(p)

dp

∣∣∣∣ . (S4)

In our case, where f(p) = log p, the information inequality reduces to Std(L̂IBS) ≥ √1− p. In Fig S2, we plot
the standard deviation of IBS compared to this lower bound.
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Figure S2. Information inequality. Standard deviation of IBS (Blue curve) and the lower bound given by the
information inequality (black, see Eq S4). The standard deviation of IBS is within 30% of the lower bound across
the entire range of p.

It may be disappointing that IBS does not match the information inequality. [3] showed that the only functions
f(p) for which the fixed sampling policy with M samples allows an unbiased estimator are polynomials of degree
up to M , and those estimators can saturate the information equality. [4] and later [1] showed that if an unbiased
estimator of a non-polynomial function f(p) exists and it matches the information inequality, it must use the inverse
binomial sampling policy. Moreover, de Groot derived necessary and sufficient conditions for f(p) to allow such
estimators [1]. Applying this argument to f(p) = log(p), the standard deviation in IBS is close (within 30%) to its
theoretical minimum.

To compare the variance of IBS and fixed sampling on equal terms, we use the scaling behavior of L̂fixed as
M → ∞. Specifically, for fixed sampling, we plot

√
M × Std(L̂fixed) and for IBS we plot 1√

p × Std(L̂IBS) (see



6

Fig S3). With this scaling, the curves for fixed sampling again collapse onto a master curve1. Note that repeated-
sampling IBS estimators L̂IBS-R (see Eq 17 in the main text), obtained by averaging multiple IBS estimates, overlap
with the curve for regular IBS for any R.
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Figure S3. Comparison of variability of IBS and fixed sampling. Standard deviation times square root of the
expected number of samples drawn by IBS (blue) and fixed sampling (red), and the master curve (black) that fixed
sampling converges to when M →∞.

All these curves increase and diverge as p → 0, reflecting the fact that estimating log-likelihoods for small
p is hard. The standard deviation of fixed sampling is always lower than that of IBS, especially when p → 0
(specifically when p� 1

M ). In other words, fixed sampling produces low-variance estimators exactly in the range
in which its estimates are biased, as guaranteed by the Cramer-Ráo bound. However, in the large-M limit, fixed
sampling does saturate the information inequality, so its master curve lies below IBS. In other words, if one is able
to draw so many samples that bias is no issue, then fixed sampling provides a slightly better trade-off between
variance and computational time. However, in Section C.2, we discuss an improvement to IBS which decreases its
variance by a factor 2-20, in which case IBS is clearly superior. Finally, a quantity of interest for the researcher
may not be the variance of the estimator per se, but a measure of the error such as the RMSE, for which IBS is also
consistently superior (see Section A.6).

A.5 A Bayesian derivation of the IBS estimator
In the main text and Section A.2 we hinted at a Bayesian interpretation of the problem of estimating log p. We
show here that indeed we can see the IBS estimator as a Bayesian point estimate of log p with a specific choice of
prior for p. For the rest of this section, we use q to denote the likelihood of a trial (instead of p); that is q is the
parameter of the Bernoulli distribution and log q the quantity we are seeking to estimate. We changed notation to
avoid confusion with expressions such as the prior probability of q, which is p(q).

Let K be the number of samples until a ‘hit’, as per the IBS sampling policy. Following Bayes’ rule, we can
write the posterior over q given K as

p(q|K) =
Pr(K|q)p(q)

Pr(K)

=
(1− q)K−1q Beta(q;α, β)∫ 1

0
(1− q)K−1q Beta(q;α, β)dq

=
Γ(K + α+ β)

Γ(α+ 1)Γ(K + β − 1)
(1− q)K+β−2qα,

(S5)

1These curves converge pointwise on (0, 1] and uniformly on any interval (ε, 1], but not uniformly on (0, 1]. The limits M → ∞ and
p → 0 are not exchangeable.
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where we used the fact that Pr(K|q) follows a geometric distribution, and we assumed a Beta(α, β) prior over q.
In particular, let us compute the posterior mean of log q under the Haldane prior, Beta(0, 0) [5]. Thanks to the

‘law of the unconscious statistician’, we can compute the posterior mean of p(log q|K) directly from Eq S5,

Ep(log q|K) [log q] = (K − 1)

∫ 1

0

(log q)(1− q)K−2dq

=

∫ 1

0

(log q)Beta(q; 1,K − 1)dq

= ψ(1)− ψ(K)

= −
K−1∑

k=1

1

k
,

(S6)

where the first row follows from setting α = 0 and β = 0; it can be shown that the third row is the expectation of
log q for a Beta distribution, with ψ(z) the digamma function [6]; and the last equality follows from the relationship
between the digamma function and harmonic numbers, that is ψ(n) = −γ+

∑n−1
k=1

1
k , where γ is Euler-Mascheroni

constant. We also used the notational convention that
∑0
k=1 ak = 0 for any ak. Note that the last row is equal to

the IBS estimator, L̂IBS(K), as defined in Eq 14 in the main text.
Crucially, Eq S5 shows that we can recover the IBS estimator as the posterior mean of log q givenK, under the

Haldane prior for q. This interpretation allows us to also define naturally the variance of our estimate for a given
K, as the variance of the posterior over log q,

Varp(log q|K) [log q] = ψ1(1)− ψ1(K), (S7)

where ψ1(z) is the trigamma function, the derivative of the digamma function; the equality follows from a known
expression for the variance of log q under a Beta distribution for q.

A.6 Estimator RMSE
In the main text and in previous comparisons we have discussed the bias and the variance of estimators of the
log-likelihood, which are important statistical properties, but one might wonder how bias and variance combine to
yield an error metric of practical relevance such as the root mean squared error (RMSE). Crucially, this analysis
depends on the number of trials N (because bias and standard deviation scale differently with N ) and on the
distribution of values of the likelihood for different trials, pi.

For illustrative purposes, we took as an example the psychometric model described in the Results section of
the main text, and calculated the distribution of pi for typical datasets and parameters settings. We then calculated
the RMSE in estimating the total log-likelihood of a number of randomly generated datasets (sampled from the
empirical distribution of pi) with different number of trials; for different numbers of samples used by the IBS and
fixed-sampling estimators.

Fig S4 shows that starting from even a handful of trials (N = 10), IBS is consistently better than fixed sampling
at estimating the true value of the log-likelihood of a given parameter vector, and overwhelmingly so for a moderate
number of trials (N ≥ 100).

B Experimental details
In this section, we report details for the three numerical experiments described in the main text and supplementary
results.
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Figure S4. Log-likelihood RMSE. RMSE of the log-likelihood estimate as a function of number of samples, for
the IBS and fixed-sampling estimators. Different panels display the RMSE curves for different number of trials.

B.1 Orientation discrimination
The parameters of the orientation discrimination model are the (inverse) slope, or sensory noise, represented as
η ≡ log σ, the bias µ, and the lapse rate γ. The logarithmic representation for σ is a natural choice for scale
parameters [](and more in general, for positive parameters that can span several orders of magnitude).

We define the lower bound (LB), upper bound (UB), plausible lower bound (PLB), and plausible upper bound
(PUB) of the parameters as per Table S1. The upper and lower bounds are hard constraints, whereas the plausible
bounds provide information to the algorithm to where the global optimum is likely to be, and are used by BADS,
for example, to draw a set of initial points to start building the surrogate Gaussian process, and to set priors over the
Gaussian process hyperparameters [7]. Here we also use the plausible bounds to select ranges for the parameters
used to generate simulated datasets, and to initialize the optimization, as described below.

Table S1. Parameters and bounds of the orientation discrimination model.

Parameter Description LB UB PLB PUB
η ≡ log σ Slope log 0.1 log 10 log 0.1 log 5

µ Bias (◦) −2 2 −1 1
γ Lapse 0.01 1 0.01 0.2

To generate synthetic data sets, we select 120 ‘true’ parameter settings for the orientation discrimination task
as follows. We set the baseline parameter θ0 as η = log 2◦, µ = 0.1◦, and γ = 0.1. Then, for each parameter
θj ∈ {η, µ, γ}, we linearly vary the value of θj in 40 increments from PLBj to PUBj as defined in Table S1 (e.g.,
from −1◦ to 1◦ for µ), while keeping the other two parameters fixed to their baseline value. For each one of the
120 parameter settings θtrue defined in this way, we randomly generated stimuli and responses for 100 datasets
from the generative model, resulting in 12000 distinct data sets for which we know the true generating parameters.

We evaluated the log-likelihood with the following methods: fixed sampling with M samples, with M ∈
{1, 2, 3, 5, 10, 15, 20, 35, 50, 100}; IBS with R repeats, with R ∈ {1, 2, 3, 5, 10, 15, 20, 35, 50}; and exact. To
avoid wasting computations on particularly ‘bad’ parameter settings, for IBS we used the ‘early stopping threshold’
technique described in Section C.1, setting a lower bound on the log-likelihood of IBS equal to the log-likelihood
of a chance model, that isLlower = −N log 2. While this might seemingly provide an advantage to IBS with respect
to Fixed sampling, note that it is simply a way to ameliorate a weakness of IBS (spending too much time on ‘bad’
parameters vectors, which are largely inconsequential for optimization), which Fixed does not suffer from. Even
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so, the stopping threshold was rarely reached (2% of evaluations).
For each data set and method, we optimized the log-likelihood by running BADS 8 times with different starting

points. We selected starting points as the points that lie on one-third or two-third of the distance between the
plausible upper and lower bound for each parameter, that is all combinations of η ∈ {−0.998, 0.305}, µ ∈
{−0.333◦, 0.333◦}, γ ∈ {0.073, 0.137}. Each of these optimization runs returns a candidate for θ̂MLE. For
methods that return a noisy estimate of the log-likelihood, we then re-evaluate L̂(θ) for each of these 8 candidates
with higher precision (for fixed sampling, we use 10M samples; for IBS, we use 10R repeats). Finally, we select
the candidate with highest (estimated) log-likelihood.

When estimating parameters using IBS or fixed sampling, we enabled the ‘uncertainty handling’ option in
BADS, informing it to incorporate measurement noise into its model of the objective function. Note that during
the optimization, the algorithm iteratively infers a single common value for the observation noise σobs associated
with the function values in a neighborhood of the current point [7]. A future extension of BADS may allow the
user to explicitly provide the noise associated with each data point, which is easily computed for the IBS estimates
(Eq 16 in the main text), affording the construction of a better surrogate model of the log-likelihood.

Alternative fixed sampling estimator

In the main text, we considered the fixed-sampling estimator defined by Eq 11. We performed an additional
analysis to empirically validate that our results do not depend on the specific choice of estimator for fixed sampling
(as expected given the theoretical arguments in the Methods section “Why fixed sampling fails” of the main text).

An alternative way of avoiding the divergence of fixed sampling is to correct samples that happen to be all
zeros, for example with

L̂fixed-bound(x) = log

(
max {m(x),mmin}

M

)
, (S8)

for some 0 < mmin < 1, which sets a lower bound for the log-likelihood equal to log (mmin/M). We then
performed our analyses of the orientation discrimination task using the L̂fixed-bound estimator with mmin = 1

2 . As
shown in Fig S5, the results are remarkably similar to what we found using the fixed-sampling estimator L̂fixed
defined by Eq 11 in the main text. Finally, we also tried L̂fixed-bound with a small value mmin = 10−3, which yielded
even worse results (data not shown).

Complete parameter recovery results

For completeness, we report in Fig S6 the parameter recovery results for fixed sampling, inverse binomial sampling
and ‘exact’ analytical methods for the orientation discrimination task, for all tested number of samples M and IBS
repeats R. All estimates were obtained via maximum-likelihood estimation using the Bayesian Adaptive Direct
Search [7], as described previously in this section.

B.2 Change localization
First, we derive the trial likelihood of the change localization model. Assuming that the change happens at location
c ∈ {1, . . . , 6}, by symmetry we can write

Pr(respond i|c changed) =




Pcorrect

(
∆

(c)
s ;θ

)
if i = c

1
5

(
1− Pcorrect

(
∆

(c)
s ;θ

))
otherwise

(S9)

where ∆
(c)
s =

∣∣∣dcirc(s
(1)
c , s

(2)
c )
∣∣∣ is the absolute circular distance between the true orientations of patch c in the first

and second display. We can derive an expression for Pcorrect

(
∆

(c)
s ;θ

)
by marginalizing over the circular distance



10

0 50 100
Number of samples 
0

0.05

0.1

γ̂

0 50 100
Number of samples 

0

0.5

1

1.5

R
M
S
E
(η
)

exact
fixed
IBS

0 50 100
Number of samples 

0

0.05

0.1
R
M
S
E
(γ
)

exact
fixed
IBS

-2 -1 0 1 2
η

-2

-1

0

1

2

η̂

exact
ibs 2.22
fixed 10

0 50 100
Number of samples 
-2

-1

0

1

η̂

exact
IBS
fixed
true

0 0.1 0.2
γ

0

0.1

0.2

γ̂

exact
ibs 6.49
fixed 20

A B C

D E F

Figure S5. Parameter recovery for the orientation discrimination model with alternative fixed sampling
estimator. Same as Fig 5 in the main text, but for the alternative fixed-sampling estimator defined by Eq S8. The
results are qualitatively identical.
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Figure S6. Full parameter recovery results for the orientation discrimination model. A. Mean estimates
recovered by fixed sampling with different number of samples. Error bars are omitted to avoid visual clutter.
B. Mean estimates recovered by IBS with different numbers of repeats. The legend reports the average number
of samples per trial that IBS uses to obtain these estimates. C. Mean estimate recovered using the ‘exact’ log-
likelihood function (see Eq 20 in the main text). D-F Same, for the bias parameter µ. G-I Same, for the lapse rate
γ. Overall, fixed sampling produces highly biased estimates of η and γ, while IBS is much more accurate. The
bias parameter µ can be accurately estimated by either method regardless of the number of samples or repeats.
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between the respective measurements,

Pcorrect

(
∆(c)
s ;θ

)
=
γ

6
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∆(c)
x |∆(c)
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where we have defined ∆
(i)
x =

∣∣∣dcirc(x
(1)
i , x

(2)
i )
∣∣∣ and we suppressed the dependence on κ to simplify the notation.

The first term in this equation is the probability density function (pdf) of the circular distance between two von
Mises random variables whose centers are ∆

(j)
s apart. The second term simplifies, since ∆

(i)
x for all i 6= j are all

independent and identically distributed. Therefore, we can rewrite this equation as
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∆ ≤ ∆(c)
x

)5
d∆(c)

x , (S11)

where ∆ is an auxiliary variable generated by taking the absolute circular difference between two von Mises
random variables that are centered at 0 with concentration parameter κ. The second term of the integrand, therefore,
is the fifth power of the cumulative distribution function (cdf) of ∆. We can compute the distribution of the circular
distance between two von Mises random variables analytically, but the cdf is non-analytic. Moreover, the integral
in Eq S11 is analytically intractable as well. We can, however, evaluate it numerically via trapezoidal integration
(see Fig 6 in the main text).

We now describe the settings used for maximum-likelihood estimation. The model parameters are the sensory
noise, represented as η ≡ log σ (with σ = 1√

κ
), and the lapse rate γ, with bounds defined in Table S2. We use

the same procedure and settings for BADS as for the orientation discrimination task (see Section B.1). For IBS,
we use an early-stopping threshold of Llower = −N log 6, and we use repeats R ∈ {1, 2, 3, 5, 10, 15, 20} (since
due to the larger response space IBS uses more samples per run). We run BADS 4 times, with starting values
of η ∈ {−1.535,−0.767} and γ ∈ {0.173, 0.337}. For data generation, we select 40 parameter vectors with
η = log 0.3 and γ linearly spaced from 0.01 to 0.5 and 40 data sets with γ = 0.03 and η between log 0.1 and log 1.
Again, we generate 100 data sets for each such parameter combination.

Table S2. Parameters and bounds of the change localization model.

Parameter Description LB UB PLB PUB
η ≡ log σ Sensory noise log 0.05 log 2 log 0.1 log 1

γ Lapse 0.01 1 0.01 0.5

Complete parameter recovery results

We report in Fig S7 the parameter recovery results for fixed sampling, inverse binomial sampling and ‘exact’
methods for the change localization task, for all tested number of samples M and IBS repeats R. For this task, the
exact method relies on numerical integration.

B.3 Four-in-a-row game
The four-in-a-row game model parameters are the value noise η ≡ log σ, the pruning threshold ξ, and the feature
dropping rate δ, with bounds defined in Table S3. We use the same procedure and settings for BADS as for
the orientation discrimination task (see Section B.1), unless noted otherwise. For IBS, we use an early-stopping
threshold of Llower = −N log 20, and due to computational cost we use only R ∈ {1, 2, 3}. For fixed sampling we
consider M ∈ {1, 2, 3, 5, 10, 15, 20, 35, 50, 100}. We have no expression for the likelihood of the four-in-a-row
game model, not even in numerical form, so there is no ‘exact’ method.
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Figure S7. Full parameter recovery results for the change localization model. Same as Fig S6, for the change
localization model. Fixed sampling is substantially biased for both the measurement noise η and the lapse rate γ,
whereas IBS is accurate for η and biased for γ, but still much less biased than fixed sampling.



14

Table S3. Parameters and bounds of the four-in-a-row game model.

Parameter Description LB UB PLB PUB
η ≡ log σ Value noise log 0.01 log 5 log 0.2 log 3

ξ Pruning threshold 0.01 10 1 10
δ Feature dropping rate 0 1 0 0.5

We run BADS 8 times, with starting values of η ∈ {−0.707, 0.196}, ξ ∈ {4, 7} and δ ∈ {0.167, 0.333}.
For data generation, we set as baseline parameter vector η = log 1, ξ = 5 and δ = 0.2 and for each parameter
we select 40 parameter vectors linearly spaced in the plausible range for that parameter (as per Table S3), while
keeping the other two parameters at their baseline value. Again, we generate 100 data sets for each such parameter
combination.

We fixed the other parameters of the model to typical values found in the previous study [8], namely wcenter =
0.60913, wconnected 2-in-a-row = 0.90444, wunconnected 2-in-a-row = 0.45076, w3-in-a-row = 3.4272, w3-in-a-row = 6.1728,
Cact = 0.92498, γtree = 0.02, λ = 0.05. The wi are the weights of features fi in the value function, briefly fcenter
values pieces near the center of the board, the other features count the number of times certain patterns occur on
the board (see [8] for the specific patterns). Cact is a parameter which scales the value of features belonging to the
active or passive player. The parameter γtree is inversely proportional to the size of the tree built by the algorithm,
and λ is the lapse rate, that is the probability of a uniformly random move among the available squares (note that
for the other models we denoted lapse rate as γ; here we use the variable naming from [8]). See [8] for more details
about the model and its parameters.

Complete parameter recovery results

We report in Fig S8 the parameter recovery results for fixed sampling and inverse binomial sampling for the 4-in-
a-row task, for all tested number of samples M and IBS repeats R. For this task, there is no ‘exact’ method to
evaluate the log-likelihood.

C Improvements of IBS and further applications

C.1 Early stopping threshold
One downside of inverse binomial sampling is that the computational time it uses to estimate the log-likelihood is
of the order of 1

p , which is equal to exp (− log p) = exp (−L). In other words, IBS spends exponentially more
time on estimating log-likelihoods of poorly-fitting models or bad parameters. This implies that an optimization
algorithm that uses IBS allocates more computational resources to estimating the objective function L (θ) for
parameter vectors θ where the objective is low. However, the value of the objective at such poor parameter vectors
are unlikely to affect its estimate of the location or value of the maximum, so the optimizer (BADS in our case) is
wasting time. It may be possible to develop optimization algorithms that take into account the exponentially large
cost of probing points where the objective function is low, but we can circumvent the problem by amending IBS
with a criterion that stops sampling when it realizes that L̂ (θ) will be low.

In the Methods section of the main text, we introduced a basic implementation of IBS for estimating the log-
likelihood of multiple trials, by sequentially computing the log-likelihood of each trial. However, another way to
implement multi-trial IBS (a ‘parallel’ implementation) is to draw one sample from the simulator model for each
trial, then set Ki = 1 for each trial where the sample matches the participant’s response. For all other trials, draw
a second sample from the model, and if that matches the response, set Ki = 2. Finally, repeat this process until no
more trials remain. We illustrate this sampling scheme graphically in Fig S9.
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Figure S8. Full parameter recovery results for the four-in-a-row model. Same as Fig S6, for the four-in-a-row
task. For this model, we do not have an exact log-likelihood formula or numerical approximation, so we only show
fixed sampling and IBS. Overall, fixed sampling has substantial biases in its estimation of η and δ and a smaller
bias in estimating ξ. IBS has almost no bias for η and only a small bias for ξ and δ.
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After each iteration, we then compute

L̂K = −
∑

i∈Imatch

Ki−1∑

k=1

1

k
−Nremaining

K−1∑

k=1

1

k
(S12)

where K is the iteration number, Imatch is the set of trials where we found a matching sample and Nremaining is
the number of remaining trials. This value L̂K is decreasing and by construction converges to

∑N
i=1 L̂i,IBS as

K → ∞. Therefore, whenever L̂K falls below a lower bound Llower, we are guaranteed that L̂IBS will be below
that bound too. When it does, we stop sampling and return Llower as estimate of L (θ). This does introduce bias
into the estimate, but since we bound the total log-likelihood, the bias will be exponentially small in N as long as
the true value L (θ) is adequately larger than Llower.
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Trial

k 1=
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3
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K 1=

K 2=
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K 4=

K 6=

K 1=

k 6=

Figure S9. IBS implementation with multiple trials. Graphical illustration of the two methods to implement
IBS with multiple trials, in this case N = 6. In this figure, each column represents a trial, each box above the trial
number represents a successive sample from the model from that trial, with red crosses for samples that do not
match the participant’s response (‘misses’) and green checkmarks for ones that do (‘hits’). Above each column,
we indicate K, the number of samples until a hit. For trials 2 and 4, K = 1 so L̂IBS = 0. The most obvious
implementation of multi-trial IBS is ‘columns-first’, to sample model responses for each trial until a hit, and only
then move to the next trial. However, a more convenient sampling method is ‘rows-first’, and sample one response
for each trial with k = 1, then one response for each trial with k = 2, excluding trials 2 and 4 since the first sample
was a hit, and continue increasing k until all trials reach a hit. This method allows for early stopping and a parallel
processing.

In practice, we recommend using as lower bound the log-probability of the data under a ‘chance’ model, which
assigns uniform probability to each possible response on each trial, and should be a poor model of the data. In
the orientation discrimination and change localization examples from the Results section of the main text, the
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log-likelihood of a chance model is −N log 2 and −N log 6, respectively. For the four-in-a-row game, the log-
likelihood of chance depends on the number of pieces on each board position; we chose an average value such
that Llower = −N log 20. This new sampling scheme has an additional advantage: since on each iteration we
independently sample from the generative model on multiple trials, we can potentially run these computations in
parallel.

C.2 Reducing variance by trial-dependent repeated sampling
As we saw in the Methods section of the main text, a simple method to improve the estimate of IBS is to run the
estimator multiple times and average the results. Repeated sampling will preserve the zero bias but reduce variance
inversely proportional to the number of repeats R.

We can further improve the estimator by varying the number of repeats Ri between trials, for 1 ≤ i ≤ N , and
define

L̂IBS-R =

N∑

i=1

1

Ri

Ri∑

r=1

L̂(r)
i , (S13)

where R is a vector of positive integers with elements Ri, and L̂(r)
i denotes the outcome of the r-th run of IBS

on trial i. This estimator is unbiased regardless of the choice of R (as long as Ri > 0 for all trials), and we can
analytically compute both its variance and expected number of samples (see Eq S14).

We can then ask what is the best allocation of repeatsRi that minimizes the variance of the estimator in Eq S13
such that the expected total number of samples does not exceed a fixed budget S. This defines the following
constrained optimization problem,

R∗ = arg min
Ri,R2...,RN

{
1

N

N∑

i=1

Li2(1− pi)
Ri

∣∣∣∣∣
N∑

i=1

Ri
pi
≤ S

}
(S14)

where we used Eq 15 for the variance of the IBS estimator.
Assuming that the Ri take continuous values, we can solve the optimization problem in Eq S14 exactly using

a Lagrange multiplier, and find the following closed-form expression for the optimal number of repeats per trial,

R∗i = S




N∑

j=1

√
Li2(1− pj)

pj



−1
√
piLi2(1− pi). (S15)

According to Eq S15, the optimal choice of repeats entails dividing the budget S across trials, where trial i is
allocated repeats proportional to

√
piLi2(1− pi). We plot this function in Fig S10 and see that, to minimize

variance, we should allocate resources primarily to trials where pi is close to 1
2 and avoid trials where pi ≈ 1

(since the variance of IBS is already small for those trials) or where pi ≈ 0 (since those utilize a larger share of the
budget).

We can also calculate exactly the fractional increase in precision (inverse variance) when using the optimal
choice of repeats vectorR∗, compared to a constant R which divides the budget equally across trials,

Var
[
L̂IBS-R

]

Var
[
L̂IBS-R∗

] =

(
N∑

i=1

√
Li2(1− pi)

pi

)2

×
(

N∑

i=1

Li2(1− pi)
)−1

×
(

N∑

i=1

1

pi

)−1
. (S16)

This equation implies that the gain in precision from this method depends on the distribution of pi across trials. If
pi ∼ Uniform[0,1] and N = 500, the median precision gain is 1.584 and the inter-quartile range (IQR) is 1.375 to
2.090. Note that the gain is always greater than 1, unless pi is constant across trials.
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Figure S10. Optimal number of repeats. Graph of
√
pLi2(1− p), which is proportional to the optimal number

of repeats for a trial with likelihood p (see equation S15). We observe that the optimal allocation of computational
resources entails repeated sampling for trials with p ≈ 1

2 and to avoid p ≈ 0 or p ≈ 1.

Practical implementation of trial-dependent repeated sampling

In practice, Eq S15 cannot be applied directly, as we have treated Ri as continuous variables, but the number of
times to repeat IBS on a given trial has to be an integer. Additionally, the method is only unbiased if Ri is at least
1 for each trial i. Therefore, we can convert R∗i to integers by rounding up to the nearest integer. This method
will make our solution approximate, and reduce the gain in precision, but it is still better than uniform repeats for
uniformly distributed pi (median: 1.567, IQR: 1.374-2.002).

The derivation above has another, more fundamental problem. Computing R∗i requires knowledge of pi on
each trial, which we do not have. While we could try and learn the allocation of R∗ as a function of θ in some
adaptive way, in practice we recommend the following simple scheme:

1. Choose a default parameter vector θ0, and run IBS with a large number of repeats (e.g, R = 100) to estimate
the (log)-likelihood of the model on each trial.

2. Compute the optimal repeats R∗i given the estimated likelihoods p̂i and a total budget of expected samples
S per likelihood evaluation, and round up.

3. Run IBS with those fixed repeats per trial on each iteration of the optimization algorithm.

This approach implicitly assumes that the log-likelihood will be correlated across trials between the generative
model with parameter vector θ0 and any other vector θ probed by the optimization algorithm. This is usually the
case, since low-probability trials are often those where something unexpected occurred (e.g., the participant of a
behavioral experiment lapsed or otherwise made an error). In our experience, this scheme considerably reduces
the variance of IBS for a given computational time budget.

C.3 Bayesian inference with IBS
While the main text focused on maximum-likelihood estimation, the unbiased log-likelihood estimates provided by
IBS can also be used to perform Bayesian inference of posterior distributions over model parameters. We describe
here a few possible approaches to approximate Bayesian inference with IBS.

Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC; see e.g. [9]) is a powerful class of algorithms that allows one to sequentially
sample from a target probability density which is known up to a normalization constant (e.g., the joint distribution).
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A popular form of MCMC is known as Metropolis-Hastings (MH [10]), which explores the target distribution by
drawing a sample from a ‘proposal distribution’ centered on the last sample (e.g., a multi-variate Gaussian). MH
‘accepts’ or ‘rejects’ the new sample with an acceptance probability that depends on the value of the target density
at the proposed and at the last point. In case of acceptance, the new point is added the sequence of samples;
otherwise, the last sample is repeated in the sequence. Under some conditions, the MH algorithm produces a
(correlated) sequence of samples that are equivalent to draws from the target density. Crucially, and somewhat
surprisingly, the MH algorithm is still valid (that is, produces a valid sequence) if one performs the comparison
with a noisy but unbiased estimate of the target density as opposed to using the exact density [11].

One problem here is that IBS provides an unbiased estimate of the log-likelihood (and thus of the log target
density); not of the likelihood. However, since the IBS estimates of the log-likelihood are nearly-exactly normally
distributed (see Fig 3 in the main text), the distribution of the likelihood is log-normal. Thus, we can apply what is
known as a ‘convexity correction’ and compute a (nearly) unbiased estimate of the likelihood ˆ̀(θ) by calculating
the expected value of a log-normal variable, that is

ˆ̀(θ) = exp

(
L̂(θ) +

1

2
Var
[
L̂(θ)

])
. (S17)

Eq S17 can be easily evaluated with IBS, using the expression for the variance of the IBS estimator (Eq 16 in the
main text).

Variational inference

An alternative class of approximate inference methods is based on variational inference (VI [12]). The goal of
VI is to approximate the intractable posterior distribution with a simpler distribution q(θ) belonging to a chosen
parametric family. A common choice is a multivariate normal with diagonal covariance (known as mean field
approximation); but other choices are possible too. VI selects the ‘best’ approximation q(·) that minimizes the
Kullback-Leibler divergence with the true posterior, or equivalently maximizes the following variational objective,

E [q] = Eθ∼q(·) [L(θ)] +H [q] , (S18)

where H [q] is the entropy of q(·), which we assume can be computed analytically or numerically. Crucially, we
can obtain an unbiased estimate of the first term in Eq S18 (the expected log joint) with IBS, as we have seen in
the Discussion in the main text. The optimization of the variational objective can then be performed directly with
derivative-free optimization methods (such as BADS), or via a technique that produces unbiased estimates of the
gradient combined with variance-reduction tricks, called black-box variational inference [13].

Gaussian process surrogate methods

One issue with the approximate inference methods described above is that they require a large (possibly, very
large) number of likelihood evaluations to converge. Thus, these approaches are unfeasible if the generative model
is somewhat computationally expensive, as it is often the case. An alternative family of methods designed to deal
with expensive likelihoods builds a Gaussian process approximation (a surrogate) of the log joint distribution, and
uses it to actively acquire further points in a smart way, similarly to the approach of Bayesian optimization [14–16].
However, unlike Bayesian optimization, the goal here is not to optimize the target function, but instead to build an
accurate approximation of the posterior distribution, with as few likelihood evaluations as possible.

IBS is particularly suited to be used in combination with Gaussian process surrogate methods as it provides
both an unbiased estimate of the log-likelihood, and a calibrated estimate of the uncertainty in each measurement,
which can be used to inform the Gaussian process observation model. The development of Gaussian process sur-
rogate methods is an active and very promising area of research. A recent example is Variational Bayesian Monte
Carlo (VBMC [15,17]), a technique that naturally combines Gaussian process surrogate modeling with variational
inference thanks to Bayesian quadrature [18]. Conveniently, VBMC returns both an approximate posterior distri-
bution and an estimate of the model evidence, which can be used for model comparison. Recent work showed that
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VBMC, combined with IBS and modified to deal with noisy log-likelihood evaluations, performs very well on a
variety of models from computational and cognitive neuroscience [19].
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