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Supporting Information

S1 Appendix

Derivation of the Fokker-Planck approximation with resetting

Define a Markov process in the discrete state space {0, 1, ..., N}, where N is the
maximum capacity for microbes within a single host. Let n; be the number of
individuals of the i-th microbial taxon for i = {1,..., M} and ny the amount of
unoccupied space. The probability of being in state n; at time ¢ 4 1 is given by the sum
of the probabilities to go in, out and remain in n; at time t,

N
D;[n;,t+1] = Z Pilo; — 1] P04, 1],

0; =0

where ®;[o0;,t] is the probability of being in state o; at time ¢, and P;[o; — n;] is the
probability of transitioning from state o; to n;. Taking out the probability of remaining
at n; we get

@i[ni,t + 1] = Pi[ni — ni]tﬁi[ni,t] + Z PZ[Ol — ni}(bi[oi,t]
0 F#N;

However Pi[n; — n;] =1— ZO#M Pi[n; — o0;]. Therefore

@ifni,t + 1] = Bifni, t] = — Y Pilni — 0i]®ifni, t] + > Pio; = n)®;[o;, 1]
oi;éni 0i5£ni

Dividing by At and taking the continuous time limit, we find the time continuous
master equation

pramiat Z Ti[ni — 0i]®;[n;, t] + Z Tilo; — 1] ®:ilo;, 1],

0i#N; 0i#N;

where T;[n; — 0;] and T;[o; — n;] are transition rates. This equation contains
transitions to and from neighbouring states of n;, i.e. n; — 1 and n; + 1, but also to and
from non-neighbouring states due to resetting events.

The next derivation steps focus on approximating the neighbouring transitions
locally around n;. However, because the resetting events are non-neighbouring
transitions, we have to treat them separately. To do this, we assume that each
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T;[n; — 0;] and T;[o; — n;] can be linearly separated in contributions due to resetting
and non-resetting events.

Define R; as the only state towards which the resetting occurs, so the master
equation for this state is

q)i 19 t *
76 gf ) = — E Ti[R; — 0;]®;[R;, t] + g T [0o; = R;]®;[o;, t] + E 7®,]0;, 1]
0i#R; 0;#R; 0;#R;

where T} [0; — R;] are transition rates from neighbouring o; to R;, and 7 is the
transition rate from non-neighbouring o; to R; (which we assume to be independent of
0;). We can rewrite this as

P.[R.
% = — Z E[RZ%OZ](I%[RZJ]-‘F Z T;[Oi%Ri]q)i[oi,ﬂ-‘rT(l—‘I)i[Ri,t])
0iF#R; 0i#R;

For any other state n} := n; # R;, the master equation is
9%i[n7, t]

ot =— Z T [nf — 0;]®;[nl,t] — 7®;[n}, t] + Z T;[0; — n]®;]04, 1],
0 £} o;F#n]

where T/ [nf — o;] are transition rates from n} to neighbouring o;. We can combine
both master equations in the following way

34’ 0®;[n;, 1]
nist] _ Z T [ng — 0;]®;[ng, 1] Z T [o; — 1] @[04, t]+7 (On;,m, — ®i[nist]) s
0i#£n; 0;FN;

where 0, g, is the Kronecker delta (1 for n; = R; and 0 in all other cases), and
7®;[n;,t] and 78, g, are the non-neighbouring outflux and influx, respectively.

Now we can approximate the neighbouring transitions contained in the sums. We
define x; = n;/N and r; = R;/N, which are approximately continuous in the large N
limit. With this the sums are replaced by integrals

8@1 [xi7 ﬂ

+7 (5%5,7‘1 - q)i[mia t]) )

where 6, ,, is 1 for ; = r; and 0 otherwise. We focus on the interval Az; around z; to
obtain the Taylor expansion of the influx, [T [z; + Az; — ;]®;[z; + Aw;, t]dAz;

Z;

2
/ (Agz) 882(T*[xﬁa;z Az [z, t])dAz; +

Realizing that the magnitude of the zeroth order term equals the outflux, truncating
the expansion at the second order and putting terms together, we find

e ((bl[x“t] /Amﬂ’i [z; — x; Aa:z]dAa%)

2
+ 5 (o] (AT la o i = Aaddes ) +7 0, — i)
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Which simplifies to

0
Sl = o

(S1)

where a;[z;] and b?[z;] are the expected change and squared-change of x;, respectively.
These quantities are derived in the main text based on the process of death, birth and
immigration of microbes. Although, the change of z; depends on all k # i. Derived
from our assumptions, a;[z;] and b?[x;] contain all the information of a host microbiome
from the j-th microbial taxon or unoccupied space (i = 0) perspective.

Importantly, host death, expressed by 7(d,,.r, — ®;[x;,1]), has opposite effects on
microbes and unoccupied space. For a microbial taxon the frequency resets to zero,
r; = 0, while for unoccupied space it resets to one, 7o = 1. Eq is the same as Eq (2)
in the main text.

A numerical solution of the stationary model, Eq (5) in the main text, can be found
using the boundary conditions %‘]E)] = %0([)1] =0 and d(bi[_o] = M = 0, alongside
®o[1] = 1 for unoccupied space and ®;[0] = 1 for microbes [1], enforcing the

normalization condition .
/ @Z[xl]dxl =1
0
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