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Supporting Information

S1 Appendix

Derivation of the Fokker-Planck approximation with resetting

Define a Markov process in the discrete state space {0, 1, ..., N}, where N is the
maximum capacity for microbes within a single host. Let ni be the number of
individuals of the i-th microbial taxon for i = {1, ...,M} and n0 the amount of
unoccupied space. The probability of being in state ni at time t+ 1 is given by the sum
of the probabilities to go in, out and remain in ni at time t,

Φi[ni, t+ 1] =

N∑
oi=0

Pi[oi → ni]Φi[oi, t],

where Φi[oi, t] is the probability of being in state oi at time t, and Pi[oi → ni] is the
probability of transitioning from state oi to ni. Taking out the probability of remaining
at ni we get

Φi[ni, t+ 1] = Pi[ni → ni]Φi[ni, t] +
∑
oi 6=ni

Pi[oi → ni]Φi[oi, t]

However Pi[ni → ni] = 1−
∑

oi 6=ni
Pi[ni → oi]. Therefore

Φi[ni, t+ 1]− Φi[ni, t] = −
∑
oi 6=ni

Pi[ni → oi]Φi[ni, t] +
∑
oi 6=ni

Pi[oi → ni]Φi[oi, t]

Dividing by ∆t and taking the continuous time limit, we find the time continuous
master equation

∂Φi[ni, t]

∂t
= −

∑
oi 6=ni

Ti[ni → oi]Φi[ni, t] +
∑
oi 6=ni

Ti[oi → ni]Φi[oi, t],

where Ti[ni → oi] and Ti[oi → ni] are transition rates. This equation contains
transitions to and from neighbouring states of ni, i.e. ni − 1 and ni + 1, but also to and
from non-neighbouring states due to resetting events.

The next derivation steps focus on approximating the neighbouring transitions
locally around ni. However, because the resetting events are non-neighbouring
transitions, we have to treat them separately. To do this, we assume that each
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Ti[ni → oi] and Ti[oi → ni] can be linearly separated in contributions due to resetting
and non-resetting events.

Define Ri as the only state towards which the resetting occurs, so the master
equation for this state is

∂Φi[Ri, t]

∂t
= −

∑
oi 6=Ri

Ti[Ri → oi]Φi[Ri, t] +
∑

oi 6=Ri

T ∗i [oi → Ri]Φi[oi, t] +
∑

oi 6=Ri

τΦi[oi, t],

where T ∗i [oi → Ri] are transition rates from neighbouring oi to Ri, and τ is the
transition rate from non-neighbouring oi to Ri (which we assume to be independent of
oi). We can rewrite this as

∂Φi[Ri, t]

∂t
= −

∑
oi 6=Ri

Ti[Ri → oi]Φi[Ri, t] +
∑

oi 6=Ri

T ∗i [oi → Ri]Φi[oi, t] + τ(1− Φi[Ri, t])

For any other state n∗i := ni 6= Ri, the master equation is

∂Φi[n
∗
i , t]

∂t
= −

∑
oi 6=n∗

i

T ∗i [n∗i → oi]Φi[n
∗
i , t]− τΦi[n

∗
i , t] +

∑
oi 6=n∗

i

Ti[oi → n∗i ]Φi[oi, t],

where T ∗i [n∗i → oi] are transition rates from n∗i to neighbouring oi. We can combine
both master equations in the following way

∂Φi[ni, t]

∂t
= −

∑
oi 6=ni

T ∗i [ni → oi]Φi[ni, t]+
∑
oi 6=ni

T ∗i [oi → ni]Φi[oi, t]+τ (δni,Ri
− Φi[ni, t]) ,

where δni,Ri
is the Kronecker delta (1 for ni = Ri and 0 in all other cases), and

τΦi[ni, t] and τδni,Ri are the non-neighbouring outflux and influx, respectively.
Now we can approximate the neighbouring transitions contained in the sums. We

define xi = ni/N and ri = Ri/N , which are approximately continuous in the large N
limit. With this the sums are replaced by integrals

∂Φi[xi, t]

∂t
=−

∫
T ∗i [xi → xi + ∆xi]Φi[xi, t]d∆xi +

∫
T ∗i [xi + ∆xi → xi]Φi[xi + ∆xi, t]d∆xi

+ τ (δxi,ri − Φi[xi, t]) ,

where δxi,ri is 1 for xi = ri and 0 otherwise. We focus on the interval ∆xi around xi to
obtain the Taylor expansion of the influx,

∫
T ∗i [xi + ∆xi → xi]Φi[xi + ∆xi, t]d∆xi

=

∫
T ∗i [xi → xi −∆xi]Φi[xi, t]d∆xi −

∫
∆xi

∂

∂xi
(T ∗i [xi → xi −∆xi]Φi[xi, t])d∆xi+∫

(∆xi)
2

2

∂2

∂x2
i

(T ∗i [xi → xi −∆xi]Φi[xi, t])d∆xi + ...

Realizing that the magnitude of the zeroth order term equals the outflux, truncating
the expansion at the second order and putting terms together, we find

∂Φi[xi, t]

∂t
=− ∂

∂xi

(
Φi[xi, t]

∫
∆xiT

∗
i [xi → xi −∆xi]d∆xi

)
+

1

2

∂2

∂x2
i

(
Φi[xi, t]

∫
(∆xi)

2T ∗i [xi → xi −∆xi]d∆xi

)
+ τ (δxi,ri − Φi[xi, t])

October 15, 2020 2/3



Which simplifies to

∂

∂t
Φi[xi, t] =

∂

∂xi

(
−ai[xi]Φi[xi, t] +

1

2

∂

∂xi

(
b2i [xi]Φi[xi, t]

))
+ τ (δxi,ri − Φi[xi, t]) ,

(S1)

where ai[xi] and b2i [xi] are the expected change and squared-change of xi, respectively.
These quantities are derived in the main text based on the process of death, birth and
immigration of microbes. Although, the change of xi depends on all k 6= i. Derived
from our assumptions, ai[xi] and b2i [xi] contain all the information of a host microbiome
from the j-th microbial taxon or unoccupied space (i = 0) perspective.

Importantly, host death, expressed by τ(δxi,ri − Φi[xi, t]), has opposite effects on
microbes and unoccupied space. For a microbial taxon the frequency resets to zero,
ri = 0, while for unoccupied space it resets to one, r0 = 1. Eq (S1) is the same as Eq (2)
in the main text.

A numerical solution of the stationary model, Eq (5) in the main text, can be found

using the boundary conditions dΦ0[0]
dx0

= dΦ0[1]
dx0

= 0 and dΦi[0]
dxi

= dΦi[1]
dxi

= 0, alongside
Φ0[1] = 1 for unoccupied space and Φi[0] = 1 for microbes [1], enforcing the
normalization condition ∫ 1

0

Φi[xi]dxi = 1
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